19.在等差數(shù)列{an}中,若a5=6,a8=15,則a14等于( 。
A.32B.33C.-33D.29

分析 利用等差數(shù)列的通項公式即可得出.

解答 解:設(shè)等差數(shù)列{an}的公差為d,∵a5=6,a8=15,∴$\left\{\begin{array}{l}{{a}_{1}+4d=6}\\{{a}_{1}+7d=15}\end{array}\right.$,解得a1=-6,d=3.
則a14=-6+13×3=33.
故選:B.

點評 本題考查了等差數(shù)列的通項公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知sinα=$\frac{4}{5}$,且α為銳角,則cos$\frac{α}{2}$=(  )
A.$\frac{{\sqrt{5}}}{5}$B.$\frac{{2\sqrt{5}}}{5}$C.$\frac{{3\sqrt{5}}}{5}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.某高校有甲、乙、丙三個數(shù)學(xué)建模興趣班,甲、乙兩班各有45人,丙班有60人,為了解該校數(shù)學(xué)建模成果,采用分層抽樣從中抽取一個容量為10的樣本,則在乙班抽取的人數(shù)為(( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知正四棱柱ABCD-A1B1C1D1(底面是正方形,側(cè)棱垂直于底面)的8個頂點都在球O的表面上,AB=1,AA1′=2,則球O的半徑R=6π;若E、F是棱AA1和DD1的中點,則直線EF被球O截得的線段長為$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=xlnx-a(x-1)2-x+1(a∈R).
(Ⅰ)當(dāng)a=0時,求f(x)的極值;
(Ⅱ)若f(x)<0對x∈(1,+∞)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=lnx-x,g(x)=$\frac{1}{3}$bx3-bx(b≠0).
(1)討論g(x)的單調(diào)性
(2)若對任意x1∈(1,2),總存在x2∈(1,2),使f(x1)=g(x2),求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)=loga(x-1)+1(a>0,且a≠1)的圖象過定點(b,f(b)),則(x2-3x+b)5的展開式中,x的系數(shù)是( 。
A.-240B.-120C.0D.120

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知橢圓C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{m}$=1(m>0).
(Ⅰ)若m=2,求橢圓C的離心率及短軸長;
(Ⅱ)若存在過點P(-1,0),且與橢圓C交于A、B兩點的直線l,使得以線段AB為直徑的圓恰好通過坐標(biāo)原點,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.盛有水的圓柱形容器的內(nèi)壁底面半徑為5cm,兩個直徑為5cm的玻璃小球都浸沒于水中,若取出這兩個小球,則水面將下降( 。ヽm.
A.$\frac{2}{3}$B.$\frac{5}{3}$C.2D.3

查看答案和解析>>

同步練習(xí)冊答案