已知各項(xiàng)均為正數(shù)的等比數(shù)列{an}滿(mǎn)足a3 =8,a5 +a7=160,{an}的前n項(xiàng)和為Sn
(1)求an;
(2)若數(shù)列{bn}的通項(xiàng)公式為bn=(-1)n·n(n∈N+),求數(shù)列{an·bn}的前n項(xiàng)和Tn。
(1);(2).

試題分析:(1)此問(wèn)主要考察基礎(chǔ)知識(shí),因?yàn)槭堑缺葦?shù)列,可以采用基本量的方法,設(shè)首項(xiàng)為,公比為,代入已知,可以解出,利用.
(2) ,  ∴,從形式上可以判斷為等差數(shù)列乘以等比數(shù)列的形式,所以采用錯(cuò)位相減法,具體過(guò)程詳見(jiàn)解析,錯(cuò)位相減法的難點(diǎn)在于計(jì)算,整理的過(guò)程,容易出錯(cuò),屬于中等習(xí)題.
試題解析:(1)設(shè)等比數(shù)列的首項(xiàng)為,公比為,由,
解得.所有    6分
(2)∵,  ∴


相減可得

     12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)是公比為的等比數(shù)列,推導(dǎo)的前項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿(mǎn)分10分)已知數(shù)列的首項(xiàng),,
(1)求證:數(shù)列為等比數(shù)列;
(2)若,求最大的正整數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列{an}中,a1=1,an+1 (n∈N*).
(1)求證: 數(shù)列 { }是等比數(shù)列,并求數(shù)列{an}的通項(xiàng)an
(2)若數(shù)列{bn}滿(mǎn)足bn=(3n-1)an,數(shù)列{bn}的前n項(xiàng)和為T(mén)n,若不等式(-1)nλ<Tn對(duì)一切n∈N*恒成立,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在等差數(shù)列{an}中,若a3=2,a5=8,則a9等于( 。
A.16B.18C.20D.22

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知等差數(shù)列{an}中,a3=30,a9=90,則該數(shù)列的首項(xiàng)為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在數(shù)列中,,),把數(shù)列的各項(xiàng)按如下方法進(jìn)行分組:()、()、()、   ,記為第組的第個(gè)數(shù)(從前到后),若=,則_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知{an}是公比為2的等比數(shù)列,若a3-a1=6,則a1=________;+…+=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知等比數(shù)列公比,若,則           .

查看答案和解析>>

同步練習(xí)冊(cè)答案