17.已知集合A={x|x2-ax+3≤0},B={x|1≤log2(x+1)≤2},若A⊆B,則實(shí)數(shù)a的取值范圍是$(-2\sqrt{3},4]$.

分析 先化簡集合B,再利用A⊆B,可得A=∅或$\left\{\begin{array}{l}{△≥0}\\{1-a+3≥0}\\{9-3a+3≥0}\end{array}\right.$,即可求出實(shí)數(shù)a的取值范圍.

解答 解:集合B={x|1≤log2(x+1)≤2}={x|log22≤log2(x+1)≤log24}
={x|2≤x+1≤4}={x|1≤x≤3},
∵A⊆B,
∴A=∅或$\left\{\begin{array}{l}{△≥0}\\{1-a+3≥0}\\{9-3a+3≥0}\end{array}\right.$,
∴-2$\sqrt{3}$<a<2$\sqrt{3}$或2$\sqrt{3}$≤a≤4,
∴實(shí)數(shù)a的取值范圍是$(-2\sqrt{3},4]$.
故答案為$(-2\sqrt{3},4]$.

點(diǎn)評 本題主要考查集合的包含關(guān)系及應(yīng)用,同時(shí)考查二次不等式和對數(shù)不等式的解法,注意運(yùn)用對數(shù)函數(shù)的單調(diào)性,以及分類討論的思想方法,準(zhǔn)確分類是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知函數(shù)f(x)=ax2+bx+3a是偶函數(shù),其定義域?yàn)閇a-1,a],則a+b=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列圖象中能作為函數(shù)圖象的是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知a=212,b=($\frac{1}{2}$)-0.2,c=3-0.8,則a,b,c的大小關(guān)系為( 。
A.b<a<cB.c<a<bC.c<b<aD.b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知A(2,-1),C(0,2),$\overrightarrow{AB}=(3,5)$,則$|\overrightarrow{BC}|$=(  )
A.6B.$\sqrt{29}$C.8D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知a,b,c分別是△ABC中角A,B,C所對的邊,且$(sinB+sinC+sinA)(sinB+sinC-sinA)=\frac{18}{5}sinBsinC$,b和c是關(guān)于x的方程x2-9x+25cosA=0的兩個根,則△ABC的形狀為(  )
A.等腰三角形B.銳角三角形C.直角三角形D.鈍角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知x,y為正實(shí)數(shù),且x+2y=8,則xy的最大值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.下列各圖中,可表示函數(shù)y=f(x)的圖象的只可能是D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.計(jì)算:sin$\frac{π}{12}$-cos$\frac{π}{12}$=-$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

同步練習(xí)冊答案