【題目】已知函數(shù)f(x)=xlnx.
(1)求f(x)的單調(diào)區(qū)間和極值;
(2)若對任意 恒成立,求實數(shù)m的最大值.
【答案】
(1)解:∵f(x)=xlnx,
∴f'(x)=lnx+1,
∴f'(x)>0有 ,∴函數(shù)f(x)在 上遞增,f'(x)<0有 ,
∴函數(shù)f(x)在 上遞減,
∴f(x)在 處取得極小值,極小值為
(2)解:∵2f(x)≥﹣x2+mx﹣3
即mx≤2xlnx+x2+3,又x>0,
∴ ,
令 ,
令h'(x)=0,解得x=1或x=﹣3(舍)
當(dāng)x∈(0,1)時,h'(x)<0,函數(shù)h(x)在(0,1)上遞減
當(dāng)x∈(1,+∞)時,h'(x)>0,函數(shù)h(x)在(1,+∞)上遞增,
∴h(x)min=h(1)=4.
∴m≤4,
即m的最大值為4.
【解析】(1)求函數(shù)的導(dǎo)數(shù),利用函數(shù)單調(diào)性和極值之間的關(guān)系即可求f(x)的單調(diào)區(qū)間和極值;(2)利用不等式恒成立,進(jìn)行參數(shù)分離,利用導(dǎo)數(shù)即可求出實數(shù)m的最大值.
【考點精析】根據(jù)題目的已知條件,利用利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的相關(guān)知識可以得到問題的答案,需要掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是菱形,∠DAB=60°,PD⊥平面ABCD,PD=AD=1,點E,F(xiàn)分別為AB和PD中點. (Ⅰ)求證:直線AF∥平面PEC;
(Ⅱ)求PC與平面PAB所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)有甲、乙兩個研發(fā)小組,他們研發(fā)新產(chǎn)品成功的概率分別為 和 .現(xiàn)安排甲組研發(fā)新產(chǎn)品A,乙組研發(fā)新產(chǎn)品B,設(shè)甲、乙兩組的研發(fā)相互獨立. (Ⅰ)求至少有一種新產(chǎn)品研發(fā)成功的概率;
(Ⅱ)若新產(chǎn)品A研發(fā)成功,預(yù)計企業(yè)可獲利潤120萬元;若新產(chǎn)品B研發(fā)成功,預(yù)計企業(yè)可獲利潤100萬元,求該企業(yè)可獲利潤的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在上的偶函數(shù)滿足,且當(dāng)時, ,若在內(nèi)關(guān)于的方程恰有3個不同的實數(shù)根,則的取值范圍是 ( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=6cos2 + sinωx﹣3(ω>0)在一個周期內(nèi)的圖象如圖所示,A為圖象的最高點,B、C為圖象與x軸的交點,且△ABC為正三角形.
(1)求ω的值及函數(shù)f(x)的值域;
(2)若f(x0)= ,且x0∈(﹣ , ),求f(x0+1)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中常數(shù).
(1)當(dāng)時,求函數(shù)的單調(diào)遞增區(qū)間;
(2)當(dāng)時,若函數(shù)有三個不同的零點,求的取值范圍;
(3)設(shè)定義在上的函數(shù)在點處的切線方程為,當(dāng)時,若在內(nèi)恒成立,則稱為函數(shù)的“類對稱點”,請你探究當(dāng)時,函數(shù)是否存在“類對稱點”,若存在,請最少求出一個“類對稱點” 的橫坐標(biāo);若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com