考點(diǎn):對數(shù)的運(yùn)算性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:y=|1+log
2x|+|log
2x|=f(x).對x分類討論:當(dāng)x≥1時(shí),f(x)=1+2log
2x;當(dāng)0<x
≤1時(shí),f(x)=-1-2log
2x;當(dāng)
<x<1時(shí),f(x)=1,即可得出.
解答:
解:y=|
log2x|+|
logx|=|1+log
2x|+|log
2x|=f(x).
當(dāng)x≥1時(shí),f(x)=1+2log
2x≥1,當(dāng)且僅當(dāng)x=1時(shí)取等號;
當(dāng)0<x
≤1時(shí),f(x)=-1-2log
2x≥1,當(dāng)且僅當(dāng)x=
時(shí)取等號;
當(dāng)
<x<1時(shí),f(x)=1,因此
<x<1時(shí)等號成立.
綜上可得:函數(shù)f(x)取最小值1時(shí)x的取值范圍是
[,1].
故答案為:
[,1].
點(diǎn)評:本題考查了絕對值函數(shù)、對數(shù)函數(shù)的單調(diào)性、分類討論,考查了推理能力與計(jì)算能力,屬于中檔題.