【題目】如圖,在以、、、、、為頂點的五面體中,平面平面,,四邊形為平行四邊形,且.

(1)求證:;

(2)若,直線與平面所成角為,求平面與平面所成銳二面角的余弦值.

【答案】(1)見解析;(2).

【解析】試題分析:

(1)過,連接,由面面垂直的性質(zhì)可得平面,.,,為等腰直角三角形,據(jù)此可得平面,.

(2)以為坐標原點,建立如圖所示的空間直角坐標系,由題設可得平面的法向量為,平面的法向量為,則銳二面角的余弦值為 .

試題解析:

(1)過,連接,由平面平面,得平面,因此.

,,,

,,

由已知為等腰直角三角形,因此,又

平面.

(2),平面平面,平面

∵平面平面,

由(1)可得,,兩兩垂直,以為坐標原點,建立如圖所示的空間直角坐標系,由題設可得,進而可得,,,,

設平面的法向量為,則,即,

可取,

設平面的法向量為,則,即,

可取,

,

∴二面角的余弦值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=,若g(x)=f(x)-a恰好有3個零點,則a的取值范圍為( 。

A. B. C. D.

【答案】D

【解析】

恰好有3個零點, 等價于的圖象有三個不同的交點,

作出的圖象,根據(jù)數(shù)形結合可得結果.

恰好有3個零點,

等價于有三個根,

等價于的圖象有三個不同的交點,

作出的圖象,如圖,

由圖可知,

時,的圖象有三個交點,

即當時,恰好有3個零點,

所以,的取值范圍是故選D.

【點睛】

本題主要考查函數(shù)的零點與分段函數(shù)的性質(zhì),屬于難題. 函數(shù)的性質(zhì)問題以及函數(shù)零點問題是高考的高頻考點,考生需要對初高中階段學習的十幾種初等函數(shù)的單調(diào)性、奇偶性、周期性以及對稱性非常熟悉;另外,函數(shù)零點的幾種等價形式:函數(shù)的零點函數(shù)軸的交點方程的根函數(shù)的交點.

型】單選題
束】
13

【題目】設集合A={0,log3(a+1)},B={a,a+b}若A∩B={1},則b=______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線y=k(x﹣m)與拋物線y2=2px(p>0)交于A、B兩點,O為坐標原點,OA⊥OB,OD⊥AB于D,點D在曲線x2+y2﹣4x=0上,則p=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)若函數(shù)存在兩個極值點且滿足,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)y=f(x)滿足:對y=f(x)圖象上任意點P(x1 , f(x1)),總存在點P′(x2 , f(x2))也在y=f(x)圖象上,使得x1x2+f(x1)f(x2)=0成立,稱函數(shù)y=f(x)是“特殊對點函數(shù)”,給出下列五個函數(shù):
①y=x1
②y=log2x;
③y=sinx+1;
④y=ex﹣2;
⑤y=
其中是“特殊對點函數(shù)”的序號是(寫出所有正確的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=cos(2x-).

(1)利用“五點法”,完成以下表格,并畫出函數(shù)fx)在一個周期上的圖象;

(2)求函數(shù)fx)的單調(diào)遞減區(qū)間和對稱中心的坐標;

(3)如何由y=cosx的圖象變換得到fx)的圖象.

2x-

0

π

x

fx

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐P-ABCD中,PBC為正三角形,AB⊥平面PBCABCD,AB=DC .

(1)求證:AE∥平面PBC;

(2)求證:AE⊥平面PDC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,多面體ABCDEF中,四邊形ABCD是矩形,EF∥AD,F(xiàn)A⊥面ABCD,AB=AF=EF=1,AD=2,AC交BD于點P

(1)證明:PF∥面ECD;
(2)求二面角B﹣EC﹣A的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分)已知圓有以下性質(zhì):

過圓上一點的圓的切線方程是.

為圓外一點,過作圓的兩條切線,切點分別為則直線的方程為.

若不在坐標軸上的點為圓外一點,過作圓的兩條切線,切點分別為,則垂直,即,且平分線段.

(1)類比上述有關結論,猜想過橢圓上一點的切線方程(不要求證明);

(2)過橢圓外一點作兩直線,與橢圓相切于兩點,求過兩點的直線方程;

(3)若過橢圓外一點不在坐標軸上)作兩直線,與橢圓相切于兩點,求證:為定值,且平分線段.

查看答案和解析>>

同步練習冊答案