9.已知直線的極坐標方程為3ρcosθ-4ρsinθ=3,求點P(2,$\frac{3π}{2}$)到這條直線的距離.

分析 求出直線的直角坐標方程,點P(2,$\frac{3π}{2}$)直角坐標方程為(0,-2),利用點到直線的距離公式,求出P到這條直線的距離.

解答 解:直線的極坐標方程為3ρcosθ-4ρsinθ=3,直角坐標方程為3x-4y-3=0,
點P(2,$\frac{3π}{2}$)直角坐標方程為(0,-2),到這條直線的距離d=$\frac{|8-3|}{5}$=1.

點評 本題考查極坐標與直角坐標的互化,考查點到直線的距離公式的運用,比較基礎.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

19.設有兩個三元素的集合為M1={-3,x+1,x2},M2={x-3,2x-1,x2+1},若M1∩M2={-3},則x的值為( 。
A.2B.0C.1D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.若tanα=-$\frac{3}{4}$,α是第二象限的角,則$\sqrt{2}$cos(α-$\frac{π}{4}$)=(  )
A.-$\frac{1}{5}$B.-$\frac{7}{5}$C.$\frac{1}{5}$D.$\frac{7}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.數(shù)列{an}的前n項和Sn=-2n2+3n(n∈N*),則當n≥2時,有( 。
A.Sn>na1>nanB.Sn<nan<na1C.na1<Sn<nanD.nan<Sn<na1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.給出下列四個命題:
①平行于同一平面的兩條直線平行;
②垂直于同一平面的兩條直線平行;
③如果一條直線和一個平面平行,那么它和這個平面內的任何直線都平行;
④如果一條直線和一個平面垂直,那么它和這個平面內的任何直線都垂直.
其中正確命題的序號是( 。
A.①②B.①③C.②④D.③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知直線y=a分別與函數(shù)y=ex+1和y=$\sqrt{x-1}$交于A,B兩點,則A,B之間的最短距離是( 。
A.$\frac{3-ln2}{2}$B.$\frac{5-ln2}{2}$C.$\frac{3+ln2}{2}$D.$\frac{5+ln2}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.平面α∩平面β=l,點A∈α,點B∈β,且B∉l,點C∈α,又AC∩l=R,過A、B、C 三點確定的平面為γ,則β∩γ是(  )
A.直線CRB.直線BRC.直線ABD.直線BC

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知命題p:若a>b>0,則ax>bx恒成立;命題q:在等差數(shù)列{an}中,m+n=p+q是an+am=ap+aq的充分不必要條件(m,n,p,q∈N*).則下面選項中真命題是( 。
A.(¬p)∧(¬q)B.(¬p)∨(¬q)C.p∨(¬q)D.p∧q

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知變量x,y滿足約束條件$\left\{\begin{array}{l}x+2y-3≤0\\ x+3y-3≥0\\ y-1≤0\end{array}\right.$,則z=x2+y2的取值范圍為$[{\frac{9}{10},9}]$.

查看答案和解析>>

同步練習冊答案