7.若f(x)是定義在R上的函數(shù),且滿足:①f(x)是偶函數(shù);②f(x+2)是偶函數(shù);③當(dāng)0<x≤2時(shí),f(x)=log2017x,當(dāng)x=0時(shí),f(0)=0,則方程f(x)=-2017在區(qū)間(1,10)內(nèi)的多有實(shí)數(shù)根之和為( 。
A.0B.10C.12D.24

分析 利用對(duì)稱性和周期性作出f(x)的函數(shù)圖象,根據(jù)對(duì)稱性得出零點(diǎn)之和.

解答 解:∵f(x+2)是偶函數(shù),
∴f(x+2)=f(-x+2),
∴f(x)的圖象關(guān)于直線x=2對(duì)稱,
又f(x)是偶函數(shù),
∴f(x+2)=f(-x+2)=f(x-2),
∴f(x)的周期為4,
作出f(x)在(0,10)上的函數(shù)圖象如圖所示:

由圖象可知f(x)=-2017在(1,10)上有4個(gè)零點(diǎn),
其中兩個(gè)關(guān)于零點(diǎn)關(guān)于直線x=4對(duì)稱,另兩個(gè)零點(diǎn)關(guān)于直線x=8對(duì)稱,
∴f(x)=-2017在(1,10)上的所有零點(diǎn)之和為4×2+8×2=24.
故選D.

點(diǎn)評(píng) 本題考查了函數(shù)零點(diǎn)與函數(shù)圖象的關(guān)系,函數(shù)周期性與對(duì)稱性的應(yīng)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知等差數(shù)列{an}滿足a2=3,a4+a7=20.
(Ⅰ)求數(shù)列{an}的通項(xiàng)an及前n項(xiàng)和為Sn;
(Ⅱ)在(Ⅰ)的條件下,證明:$\sum_{k=1}^{n}$$\frac{1}{{S}_{K}}$<$\frac{5}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知邊長(zhǎng)為2的菱形ABCD中,∠BCD=60°,E為DC的中點(diǎn),如圖1所示,將△BCE沿BE折起到△BPE的位置,且平面BPE⊥平面ABED,如圖2所示.
(Ⅰ)求證:△PAB為直角三角形;
(Ⅱ)求二面角A-PD-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知命題$p:?x>e,{({\frac{1}{2}})^x}$>lnx;命題q:?a>1,b>1,logab+2logba≥2$\sqrt{2}$,則下列命題中為真命題的是( 。
A.(?p)∧qB.p∧qC.p∧(?q)D.p∨(?q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.在區(qū)間[0,2]上隨機(jī)取兩個(gè)數(shù)x,y,則xy∈[0,2]的概率是( 。
A.$\frac{1-ln2}{2}$B.$\frac{3-2ln2}{4}$C.$\frac{1+ln2}{2}$D.$\frac{1+2ln2}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=|x-2|+|x+4|,g(x)=x2+4x+3.
(1)求不等式f(x)≥g(x)的解集;
(2)若f(x)≥|1-5a|恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)$f(x)={e^x}-ax-1-\frac{x^2}{2},x∈R$.
(1)若a=1,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若對(duì)任意x≥0都有f(x)≥0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.如圖,四邊形ABCD是正方形,四邊形ABEG是平行四邊形,且平面ABCD⊥平面ABEG,AE⊥AB,EF⊥AG于F,設(shè)線段CD、AE的中點(diǎn)分別為P、M.
(Ⅰ)求證:EF⊥平面BCE;
(Ⅱ)求證:MP∥平面BCE;
(Ⅲ)若∠EAF=30°,求三棱錐M-BDP和三棱錐F-BCE的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知$sinα=\frac{3}{5}$,且角α的終邊在第二象限,則tanα=(  )
A.30°B.$-\frac{3}{4}$C.$\frac{{10\sqrt{3}}}{3}$D.$5\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案