5.已知直線x=t與函數(shù)f(x)=lnx和g(x)=a+ax-x2的圖象分別交于M、N兩點(diǎn),O為坐標(biāo)原點(diǎn),當(dāng)直線OM、ON的斜率之差kOM-kON在區(qū)間t∈[1,+∞)上單調(diào)遞增時(shí),實(shí)數(shù)a的取值范圍為( 。
A.[-2,+∞)B.(-∞,-2]C.(-2,+∞)D.(-2,2)

分析 求出y=kOM-kON=$\frac{lnt}{t}$-$\frac{a}{t}$-a+t,求導(dǎo)數(shù),得出y′=$\frac{1-lnt+a}{{t}^{2}}$+1≥0在區(qū)間t∈[1,+∞)上恒成立,可得a≥-t2+lnt-1在區(qū)間t∈[1,+∞)上恒成立,再求出右邊的最大值,即可得出結(jié)論.

解答 解:由題意M(t,lnt),N(t,a+at-t2),
∴y=kOM-kON=$\frac{lnt}{t}$-$\frac{a}{t}$-a+t,
∴y′=$\frac{1-lnt+a}{{t}^{2}}$+1,
∵kOM-kON在區(qū)間t∈[1,+∞)上單調(diào)遞增,
∴y′=$\frac{1-lnt+a}{{t}^{2}}$+1≥0在區(qū)間t∈[1,+∞)上恒成立,
∴a≥-t2+lnt-1在區(qū)間t∈[1,+∞)上恒成立,
令f(t)=-t2+lnt-1,則f′(t)=-2t+$\frac{1}{t}$<0在區(qū)間t∈[1,+∞)上恒成立,
∴f(t)=-t2+lnt-1單調(diào)遞減,
∴f(t)≥f(1)=-2,
∴a≥-2.
故選:A.

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)知識(shí)的 綜合運(yùn)用,考查恒成立問題,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列結(jié)論判斷正確的是( 。
A.任意兩條直線確定一個(gè)平面
B.三條平行直線最多確定三個(gè)平面
C.棱長(zhǎng)為1的正方體的內(nèi)切球的表面積為4π
D.若平面α⊥平面β,平面β⊥平面γ,則平面α∥平面γ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)函數(shù)y=f(x),x∈R,“y=|f(x)|是偶函數(shù)”是“y=f(x)的圖象關(guān)于原點(diǎn)對(duì)稱”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.平行四邊形ABCD中,$\overrightarrow{AB}$=(1,0),$\overrightarrow{AD}$=(1,2),則$\overrightarrow{AC}$•$\overrightarrow{BD}$等于( 。
A.-4B.4C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若向量$\overrightarrow{a}$,$\overrightarrow$滿足:($\overrightarrow{a}$-$\overrightarrow$)•(2$\overrightarrow{a}$+$\overrightarrow$)=-4,且|$\overrightarrow{a}$|=2,|$\overrightarrow$|=4,則$\overrightarrow{a}$與$\overrightarrow$的夾角為(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.計(jì)算:Cn0+2Cn1+22Cn2+…+2nCnn=3n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某廠在計(jì)劃期內(nèi)要安排生產(chǎn)甲、乙兩種產(chǎn)品,這些產(chǎn)品分別需要在A、B、C、D四種不同的設(shè)備上加工,按工藝規(guī)定,產(chǎn)品甲和產(chǎn)品乙在各設(shè)備上需要的加工臺(tái)時(shí)數(shù)于下表給出.已知各設(shè)備在計(jì)劃期內(nèi)有效臺(tái)時(shí)數(shù)分別是12,8,16,12(一臺(tái)設(shè)備工作一小時(shí)稱為一臺(tái)時(shí)),該廠每生產(chǎn)一件產(chǎn)品甲可得利潤(rùn)2元,每生產(chǎn)一件產(chǎn)品乙可得利潤(rùn)3元,問應(yīng)如何安排生產(chǎn)計(jì)劃,才能獲得最大利潤(rùn)??
  設(shè)備
產(chǎn)品
ABCD
2140
2204

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在復(fù)平面內(nèi),復(fù)數(shù)$\frac{-1+i}{i}$對(duì)應(yīng)的點(diǎn)位于第一象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.隨機(jī)抽取某中學(xué)甲乙兩班各10名同學(xué),測(cè)量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如圖.(s2=$\frac{1}{n}$[(x1-$\overline{x}$)2+(x2-$\overline{x}$)2+…+(xn-$\overline{x}$)2])
(Ⅰ)根據(jù)莖葉圖判斷哪個(gè)班的平均身高較高;
(Ⅱ)計(jì)算甲班的樣本方差;
(Ⅲ)現(xiàn)從乙班這10名同學(xué)中隨機(jī)抽取兩名身高不低于173cm的同學(xué),求身高為176cm的同學(xué)被抽中的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案