20.已知數(shù)列{an}滿足對任意n∈N*,都有anan+1an+2an+3=24,且a1=1,a2=2,a3=3,則a1+a2+a3+…+a2015=( 。
A.5030B.5031C.5033D.5036

分析 數(shù)列{an}滿足對任意n∈N*,都有anan+1an+2an+3=24,可得an+1an+2an+3an+4=24,an+4=an.利用周期性即可得出.

解答 解:∵數(shù)列{an}滿足對任意n∈N*,都有anan+1an+2an+3=24,
∴an+1an+2an+3an+4=24,∴an+4=an
∴數(shù)列{an}是周期為4的數(shù)列.
又a1=1,a2=2,a3=3,∴1×2×3×a4=24,解得a4=4,
∴a1+a2+a3+…+a2015=503×(a1+a2+a3+a4)+a1+a2+a3=503×10+(1+2+3)=5036.
故選:D.

點評 本題考查了數(shù)列的遞推關(guān)系、數(shù)列的周期性,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.一直線過點M(-3,4),并且在兩坐標(biāo)軸上截距相等,求這條直線方程是4x+3y=0,或x+y=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知曲線C的參數(shù)方程是$\left\{\begin{array}{l}{x=2+2cosθ}\\{y=sinθ}\end{array}\right.$(θ為參數(shù)),直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t+1}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$,求直線l與曲線C相交所成的弦的弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列說法正確的是( 。
A.-45°是銳角B.-180°與180°的終邊相同
C.90°是第一象限角D.第二象限角大于90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列函數(shù)中,在x=0處的導(dǎo)數(shù)不等于零的是( 。
A.y=x3+x2B.y=x+e-xC.y=(x-1)e2D.y=xsinx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.函數(shù)f(x)=xcosx的導(dǎo)數(shù)為cosx-xsinx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.判斷函數(shù)f(x)=$\frac{x}{{x}^{2}+1}$在(1,+∞)上的單調(diào)性,并求當(dāng)x∈[2,3]時的函數(shù)的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.將半徑為4的半圓卷成圓錐的側(cè)面,則圓錐的軸截面的面積為4$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.(1)0<x<$\frac{4}{3}$,求y=x(4-3x)的最大值
(2)0<x<2,求y=x(5-2x)2的最大值
(3)x,y>0,且x2y=8,求2x2+y2的最小值,S=x2+4xy的最小值及相應(yīng)的x,y的值.
(4)0<x<10,求V=3x4(25-$\frac{1}{4}$x2)的最大值及相應(yīng)的x的值.

查看答案和解析>>

同步練習(xí)冊答案