17.如圖,在△ABC中,M是邊BC上的點(diǎn),且tan∠BAM=$\frac{1}{3}$,tan∠AMC=-$\frac{1}{2}$.
(Ⅰ)求角B的大。
(Ⅱ)設(shè)α+β=B(α>0,β>0),求$\sqrt{2}$sinα-sinβ的取值范圍.

分析 (Ⅰ)由已知利用兩角差的正切函數(shù)公式可求tanB的值,結(jié)合范圍0<B<π,可求B的值.
(Ⅱ)由(Ⅰ)知B=$\frac{3π}{4}$,可得$β=B-α=\frac{3π}{4}-α$,利用三角函數(shù)恒等變換的應(yīng)用化簡(jiǎn)可得$\sqrt{2}$sinα-sinβ=sin(α-$\frac{π}{4}$),結(jié)合范圍$0<α<\frac{3π}{4}$,利用正弦函數(shù)的圖象和性質(zhì)可求其取值范圍.

解答 解:(Ⅰ)$tanB=tan(∠AMC-∠BAM)=\frac{{-\frac{1}{2}-\frac{1}{3}}}{{1+(-\frac{1}{2})•\frac{1}{3}}}=-1$,
∵0<B<π,
∴$B=\frac{3π}{4}$.
(Ⅱ)由(Ⅰ)知B=$\frac{3π}{4}$,
∵α+β=B,∴$β=B-α=\frac{3π}{4}-α$,
∴$\sqrt{2}sinα-sinβ=\sqrt{2}sinα-sin(\frac{3π}{4}-α)$
=$\frac{{\sqrt{2}}}{2}sinα-\frac{{\sqrt{2}}}{2}cosα$=$sin(α-\frac{π}{4})$,
∵$0<α<\frac{3π}{4}$,
∴$-\frac{π}{4}<α-\frac{π}{4}<\frac{π}{2}$,
∴$-\frac{{\sqrt{2}}}{2}<sin(α-\frac{π}{4})<1$,
∴$\sqrt{2}sinα-sinβ$的取值范圍是$(-\frac{{\sqrt{2}}}{2},1)$.

點(diǎn)評(píng) 本題主要考查了兩角差的正切函數(shù)公式,三角函數(shù)恒等變換的應(yīng)用,正弦函數(shù)的圖象和性質(zhì)在三角函數(shù)化簡(jiǎn)求值中的應(yīng)用,考查了轉(zhuǎn)化思想和數(shù)形結(jié)合思想的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.AQI(Air Quality Index,空氣質(zhì)量指數(shù))是報(bào)告每日空氣質(zhì)量的參數(shù),描述了空氣清潔或者污染的程度.AQI共分六級(jí),從一級(jí)優(yōu)(0~50),二級(jí)良(51~100,),三級(jí)輕度污染(101~150),四級(jí)重度污染(151~200),直至無(wú)極重度污染(201~300),六級(jí)嚴(yán)重污染(大于300).下面是昆明市2017年4月份隨機(jī)抽取的10天的AQI莖葉圖,利用該樣本估計(jì)昆明市2018年4月份質(zhì)量?jī)?yōu)的天數(shù)(按這個(gè)月共30天計(jì)算)為( 。
A.3B.4C.12D.21

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=4sinxcos(x-$\frac{π}{6}$)+1.
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)求函數(shù)f(x)在區(qū)間[-$\frac{π}{6}$,$\frac{π}{4}$]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知函數(shù)f(x)=2sin(2x+$\frac{2π}{3}$),若將函數(shù)f(x)的圖象向右平移$\frac{π}{6}$個(gè)單位得到函數(shù)g(x)的圖象,則函數(shù)g(x)的解析式是g(x)=2sin(2x+$\frac{π}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知集合A={x|-1<x<2},$B=\left\{{x|y={x^{-\frac{1}{2}}}}\right\}$,則A∩B=(  )
A.(0,+∞)B.(-1,2)C.(0,2)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=|x-4m|+|x+$\frac{1}{m}$|(m>0).
(Ⅰ)證明:f(x)≥4;
(Ⅱ)若k為f(x)的最小值,且a+b=k(a>0,b>0),求$\frac{1}{a}+\frac{4}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=$\frac{e^x}{x}$.
(Ⅰ)求曲線y=f(x)在點(diǎn)P(2,$\frac{e^2}{2}$)處的切線方程;
(Ⅱ)證明:f(x)>2(x-lnx).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.矩形紙片ABCD中,AB=10cm,BC=8cm.將其按圖(1)的方法分割,并按圖(2)的方法焊接成扇形;按圖(3)的方法將寬BC  2等分,把圖(3)中的每個(gè)小矩形按圖(1)分割并把4個(gè)小扇形焊接成一個(gè)大扇形;按圖(4)的方法將寬BC  3等分,把圖(4)中的每個(gè)小矩形按圖(1)分割并把6個(gè)小扇形焊接成一個(gè)大扇形;…;依次將寬BC n等分,每個(gè)小矩形按圖(1)分割并把2n個(gè)小扇形焊接成一個(gè)大扇形.當(dāng)n→∞時(shí),最后拼成的大扇形的圓心角的大小為( 。
A.小于$\frac{π}{2}$B.等于$\frac{π}{2}$C.大于$\frac{π}{2}$D.大于1.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.在直角△ABC中,$∠A=\frac{π}{2}$,AB=1,AC=2,M是△ABC內(nèi)一點(diǎn),且$AM=\frac{1}{2}$,若$\overrightarrow{AM}=λ\overrightarrow{AB}+μ\overrightarrow{AC}$,則λ+2μ的最大值$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案