12.已知一個(gè)空間幾何體的三視圖如圖所示,根據(jù)圖中標(biāo)出的尺寸,可得這個(gè)幾何體的全面積為10+2$\sqrt{3}$+4$\sqrt{2}$.

分析 畫出幾何體的直觀圖,求出各棱長(zhǎng),進(jìn)而求出各個(gè)面的面積,相加可得答案.

解答 解:該幾何體的直觀圖如圖所示:

其中:PA=AD=AB=2,BC=4,
PB=PD=CD=2$\sqrt{2}$,PC=2$\sqrt{6}$,
故S△PAB=S△PAD=2,
S△PBC=4$\sqrt{2}$,
S△PCD=2$\sqrt{3}$,
SABCD=6,
故這個(gè)幾何體的全面積S=10+2$\sqrt{3}$+4$\sqrt{2}$,
故答案為:10+2$\sqrt{3}$+4$\sqrt{2}$

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是棱錐的體積和表面積,幾何體的三視圖,難度不大,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知集合A={x∈R|ax2+2x+1=0},其中a∈R.
(1)1是A中的一個(gè)元素,用列舉法表示A;
(2)若A中有且僅有一個(gè)元素,求實(shí)數(shù)a的組成的集合B;
(3)若A中至多有一個(gè)元素,試求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=$\frac{ax}{1+x{\;}^{2}}$(a≠0).
(1)試討論y=f(x)的極值;
(2)若a>0,設(shè)g(x)=x2emx,且任意的x1,x2∈[0,2],f(x1)-g(x2)≥-1恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知集合A={3,5,6,8},B={4,5,7,8},則A∩B等于( 。
A.{5}B.{5,8}C.{3,7,8}D.{3,4,5,6,7,8}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=x2-2x-8,g(x)=2x2-4x-16,
(1)求不等式g(x)<0的解集;
(2)若對(duì)一切x>5,均有f(x)≥(m+2)x-m-15成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.f(x)是定義在非零實(shí)數(shù)集上的函數(shù),f′(x)為其導(dǎo)函數(shù),且x>0時(shí),xf′(x)-f(x)<0,記a=$\frac{f(lo{g}_{2}5)}{lo{g}_{2}5}$,b=$\frac{f({2}^{0.2})}{{2}^{0.2}}$,c=$\frac{f(0.{2}^{2})}{0.{2}^{2}}$,則( 。
A.a<b<cB.c<a<bC.b<a<cD.c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.對(duì)于x∈R,[x]表示不超過(guò)x的最整數(shù),如[1.1]=1,[-2.1]=-3.定義R上的函數(shù)f(x)=[2x]+[4x]+[8x],若A={y|y=f(x),0≤x≤$\frac{1}{2}$},則A中所有元素的和為( 。
A.15B.19C.20D.55

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.命題“若x>1且y<-3,則x-y>4”的等價(jià)命題是“若x-y≤4,則x≤1或y≥-3”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f (x)=$\sqrt{lo{g}_{0.3}(4x-1)}$的定義域?yàn)锳,m>0,函數(shù)g(x)=4 x-1(0<x≤m)的值域?yàn)锽.
(1)當(dāng)m=1時(shí),求 (∁R A)∩B;
(2)是否存在實(shí)數(shù)m,使得A=B?若存在,求出m的值; 若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案