兩縣城A和B相距20km,現(xiàn)計劃在兩縣城外,以AB為直徑的半圓弧AB上選擇一點C建造垃圾處理廠,其對城市的影響度與所選地點到城市的距離有關(guān),對城A和城B的總影響度為對城A與城B的影響度之和,記C點到城A的距離為,建在C處的垃圾處理廠對城A和城B的總影響度為,統(tǒng)計調(diào)查表明:垃圾處理廠對城A的影響度與所選地點到城A的距離的平方成反比,比例系數(shù)為4;對城B的影響度與所選地點到城B的距離的平方成反比,比例系數(shù)為k,當垃圾處理廠建在AB的中點時,對A和城B的總影響度為0.065。



(1)將表示成的函數(shù);
(2)判斷弧AB上是否存在一點,使建在此處的垃圾處理廠對城A和城B的總影響度最?若存在,求出該點到城A的距離;若不存在,說明理由。
(1) (2) 在弧AB存在C點使得交點在此處的垃圾處廠對A、B影響最小,該點距A的距離是km

試題分析:解:(1)如圖由題意知
             3
其中當
                                   5
           6
(2)
              9


            11






0



 

                13
答:在弧AB存在C點使得交點在此處的垃圾處廠對A、B影響最小,該點距A的距離是km。                 14
點評:解決的關(guān)鍵是能夠利用導數(shù)的符號來研究函數(shù)單調(diào)性,以及函數(shù)的最值的求解,屬于基礎(chǔ)題。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:填空題

設(shè)函數(shù)f(x)=的最大值為M,最小值為N,那么M+N= _________ 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

定義在[-1,1]上的奇函數(shù)滿足,且當,時,有
(1)試問函數(shù)f(x)的圖象上是否存在兩個不同的點A,B,使直線AB恰好與y軸垂直,若存在,求出A,B兩點的坐標;若不存在,請說明理由并加以證明.
(2)若對所有恒成立,
求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

建造一間占 地面積為12m²的背面靠墻的豬圈,底面為長方形,豬圈正面的造價為每平方米12元,側(cè)面的造價為每平方米80元,屋頂造價為1120元.如果墻高3m,且不計豬圈背面的費用,問:如何設(shè)計能使豬圈的總 造價最低?最低總造價是多少?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

國家助學貸款是由財政貼息的信用貸款,旨在幫助高校家庭經(jīng)濟困難學生支付在校期間所需的學費、住宿費及生活費。每一年度申請總額不超過6000元。某大學2012屆畢業(yè)生凌霄在本科期間共申請了24000元助學貸款,并承諾畢業(yè)后3年(按36個月計)內(nèi)還清。簽約單位提供的工資標準為第一年內(nèi)每月1500元,第13個月開始每月工資比前一個月增加5%直到4000元。凌霄同學計劃前12個月每月還款500元,第13個月開始每月還款比前一個月多元.
(1)若凌霄同學恰好在第36個月(即畢業(yè)后3年)還清貸款,求值;(6分)
(2)當時,凌霄同學將在畢業(yè)后第幾個月還清最后一筆貸款?他當月工資余額能否滿足當月3000元的基本生活費?(6分)
(參考數(shù)據(jù):,,

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題


已知函數(shù),且任意的

(1)求、的值;
(2)試猜想的解析式,并用數(shù)學歸納法給出證明.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下列4對函數(shù)中表示同一函數(shù)的是(   )
A.=B.,=
C.=,D., =

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù) (a>0,且a≠1),=.
(1)函數(shù)的圖象恒過定點A,求A點坐標;
(2)若函數(shù)的圖像過點(2,),證明:函數(shù)(1,2)上有唯一的零點.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

函數(shù)y=x2(x>0)的圖像在點(ak,ak2)處的切線與x軸交點的橫坐標為ak+1,k為正整數(shù),a1=16,則a1+a3+a5=_________

查看答案和解析>>

同步練習冊答案