15.對(duì)于實(shí)數(shù)x,y,若|x-1|≤2,|y-1|≤2,則|x-2y+1|的最大值為( 。
A.2B.4C.5D.6

分析 利用絕對(duì)值的幾何意義,轉(zhuǎn)化求解最值即可.

解答 解:實(shí)數(shù)x,y,若|x-1|≤2,|y-1|≤2,則x∈[-1,3],y∈[-1,3],
則|x-2y+1|=|x-1-2(y-1)|≤|x-1|+2|y-1|≤2+2×2=6.
當(dāng)且僅當(dāng)x=-1或3,y=-1或3時(shí),取等號(hào).
故選:D.

點(diǎn)評(píng) 本題考查絕對(duì)值三角不等式的解法,考查轉(zhuǎn)化思想以及計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.(1)證明:$({k+1})C_{n+1}^{k+1}=({n+1})C_n^k$;
(2)證明:$C_n^0-\frac{1}{2}C_n^1+\frac{1}{3}C_n^2-\frac{1}{4}C_n^3+…+\frac{{{{({-1})}^n}}}{n+1}C_n^n=\frac{1}{n+1}$;
(3)證明:$C_n^1-\frac{1}{2}C_n^2+\frac{1}{3}C_n^3-\frac{1}{4}C_n^4+…+\frac{{{{({-1})}^{n-1}}}}{n}C_n^n=1+\frac{1}{2}+\frac{1}{3}+…+\frac{1}{n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.若實(shí)數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{x+3y-3≤0}\\{x+y+1≥0}\\{y≥-1}\end{array}\right.$,則z=2|x|+y的最大植為11.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,長(zhǎng)方體ABCD-A1B1C1D1中,O是BD的中點(diǎn),AA1=2AB=2BC=4.
(1)求證:C1O∥平面AB1D1
(2)點(diǎn)E在側(cè)棱AA1上,求四棱錐E-BB1D1D的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知x>1,則函數(shù)$y=\frac{{{x^2}+x+1}}{x-1}$的最小值為$3+2\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知函數(shù)f(x)=ax3+bx,若f(a)=8,則f(-a)=-8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.若變量x,y滿足條件$\left\{{\begin{array}{l}{{x^2}+{y^2}-2x-2y+1≤0}\\{|x-1|-y≤0}\end{array}}\right.$,則z=2x+y最小值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知點(diǎn)P在雙曲線$\frac{x^2}{16}-\frac{y^2}{9}=1$上,點(diǎn)A滿足$\overrightarrow{PA}=(t-1)\overrightarrow{OP}$(t∈R),且$\overrightarrow{OA}•\overrightarrow{OP}=64$,$\overrightarrow{OB}=(0,1)$,則$|{\overrightarrow{OB}•\overrightarrow{OA}}|$的最大值為( 。
A.$\frac{5}{4}$B.$\frac{24}{5}$C.$\frac{4}{5}$D.$\frac{5}{24}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=$\frac{alnx}{x}$+b(a,b∈R)的圖象在點(diǎn)(1,f(1))處的切線方程為y=x-1.
(1)求實(shí)數(shù)a,b的值及函數(shù)f(x)的單調(diào)區(qū)間.
(2)當(dāng)f(x1)=f(x2)(x1≠x2)時(shí),比較x1+x2與2e(e為自然對(duì)數(shù)的底數(shù))的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案