分析 (1)先求出函數(shù)的導(dǎo)數(shù),根據(jù)f′(1)=-e,求出a的值即可;
(2)問(wèn)題轉(zhuǎn)化為a≤lnx+$\frac{1}{x}$或a≥lnx+$\frac{1}{x}$,令g(x)=lnx+$\frac{1}{x}$,通過(guò)求導(dǎo)得到g(x)的單調(diào)性,求出g(x)的最小值,從而求出a的范圍
解答 解:(1)∵f′(x)=ex(lnx+$\frac{1}{x}$-a),(x>0),直線y=$\frac{1}{e}$x+1的斜率是:$\frac{1}{e}$,
∴f′(1)=e(1-a)=-e,解得:a=2;
(2)若函數(shù)f(x)在區(qū)間(0,+∞)上是單調(diào)函數(shù),
則ex(lnx+$\frac{1}{x}$-a)≥0或ex(lnx+$\frac{1}{x}$-a)≤0,
即a≤lnx+$\frac{1}{x}$或a≥lnx+$\frac{1}{x}$,
令g(x)=lnx+$\frac{1}{x}$,則g′(x)=$\frac{x-1}{{x}^{2}}$,
令g′(x)>0,解得:x>1,令g′(x)<0,解得:0<x<1,
∴g(x)在(0,1)遞減,在(1,+∞)遞增,
∴g(x)最小值=g(1)=1,無(wú)最大值;
故a≤1,函數(shù)f(x)在區(qū)間(0,+∞)上單調(diào)遞增.
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用,曲線的切線方程問(wèn)題,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年江西吉安一中高二上段考一數(shù)學(xué)(理)試卷(解析版) 題型:填空題
如果對(duì)任何實(shí)數(shù),直線都過(guò)一個(gè)定點(diǎn),那么點(diǎn)的坐標(biāo)是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com