分析 由丨MF丨=$\frac{^{2}}{a}$,丨AF丨=a+c,tan$\frac{θ}{2}$=$\frac{丨MF丨}{丨AF丨}$$\frac{\frac{^{2}}{a}}{a+c}$=$\frac{{c}^{2}-{a}^{2}}{a(a+c)}$=$\frac{c-a}{a}$=e-1,f(θ)=tan$\frac{θ}{2}$+1,代入即可求得答案.
解答 解:由題意可知:離心率e=$\frac{c}{a}$,b2=c2-a2,
丨MF丨=$\frac{^{2}}{a}$,丨AF丨=a+c,離心率e=$\frac{c}{a}$,
∠MAN=θ,則tan$\frac{θ}{2}$=$\frac{丨MF丨}{丨AF丨}$$\frac{\frac{^{2}}{a}}{a+c}$=$\frac{{c}^{2}-{a}^{2}}{a(a+c)}$=$\frac{c-a}{a}$=e-1,
∴e=tan$\frac{θ}{2}$+1,
雙曲線C的離心率為f(θ)=tan$\frac{θ}{2}$+1,
f($\frac{2π}{3}$)-f($\frac{π}{3}$)=tan$\frac{π}{3}$+1-(tan$\frac{π}{6}$+1)=$\frac{2\sqrt{3}}{3}$,
故答案為:$\frac{2\sqrt{3}}{3}$.
點評 本題考查雙曲線的簡單幾何性質,考查數形結合思想,屬于基礎題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | a>b>c | B. | b>a>c | C. | b>c>a | D. | c>a>b |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | a=$\sqrt{2}$b | B. | a=2b | C. | a=$\sqrt{3}$b | D. | a=3b |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{2}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com