7.若函數(shù)$y=ln(ax+\sqrt{{x^2}+1})(a>0)$為奇函數(shù),設變量x,y滿足約束條件$\left\{\begin{array}{l}{x+y-2≥0}\\{x-y-2≤0}\\{y≥1}\end{array}\right.$,則目標函數(shù)z=ax+2y的最小值為(  )
A.2B.3C.4D.5

分析 由約束條件作出可行域,再由函數(shù)為奇函數(shù)求得a值,代入目標函數(shù),化為直線方程的斜截式,數(shù)形結合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標,代入目標函數(shù)得答案.

解答 解:由約束條件$\left\{\begin{array}{l}{x+y-2≥0}\\{x-y-2≤0}\\{y≥1}\end{array}\right.$作出可行域如圖,

∵函數(shù)$y=ln(ax+\sqrt{{x^2}+1})(a>0)$為奇函數(shù),
∴l(xiāng)n($ax+\sqrt{{x}^{2}+1}$)+ln(-$ax+\sqrt{{x}^{2}+1}$)=ln(x2+1-a2x2)=0,
又a>0,得a=1.
∴目標函數(shù)z=ax+2y=x+2y,化為y=$-\frac{x}{2}+\frac{z}{2}$.
由圖可知,當直線y=$-\frac{x}{2}+\frac{z}{2}$過A時,直線在y軸上的截距最小,z有最小值為3.
故選:B.

點評 本題考查簡單的線性規(guī)劃,考查了數(shù)形結合的解題思想方法,是中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=(ax+b)lnx-bx+3在(1,f(1))處的切線方程為y=2.
(1)求a,b的值;
(2)求函數(shù)f(x)的極值.
(3)若g(x)=f(x)+kx在(1,3)是單調函數(shù),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的離心率為$\sqrt{5}$,且點P($\sqrt{{a}^{2}+^{2}}$,0)到其漸近線的距離為8,則C的實軸長為(  )
A.2B.4C.8D.16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.正四面體ABCD中各棱長為2,E為AC的中點,則BE與CD所成角的余弦值為( 。
A.$\frac{{\sqrt{3}}}{6}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.如圖,橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率是$\frac{\sqrt{3}}{2}$,且過點($\sqrt{3}$,$\frac{1}{2}$).設點A1,B1分別是橢圓的右頂點和上頂點,如圖所示過 點A1,B1引橢圓C的兩條弦A1E、B1F.
(1)求橢圓C的方程;
(2)若直線A1E與B1F的斜率是互為相反數(shù).
①求直線EF的斜率k0 ②設直線EF的方程為y=k0x+b(-1≤b≤1)設△A1EF、△B1EF的面積分別為S1和S2,求S1+S2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.執(zhí)行如圖程序中,若輸出y的值為1,則輸入x的值為( 。
A.0B.1C.0或1D.0或-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.求函數(shù)f(x)=log${\;}_{\frac{1}{3}}$(x2-5x+4)的定義域和單調區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.設f(x)=ax-ln(1+x2),
(1)當a=$\frac{4}{5}$時,求f(x)在(0,+∞)的極值;
(2)證明:當x>0時,ln(1+x2)<x;
(3)證明:$(1+\frac{1}{2^4})(1+\frac{1}{3^4})…(1+\frac{1}{n^4})<e$(n∈N*,n≥2,e為自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知a=$\frac{2}{π}\int_{-1}^1{(\sqrt{1-{x^2}}+sinx)dx}$,則二項式${(x-\frac{a}{x^2})^9}$的展開式中的常數(shù)項為-84.

查看答案和解析>>

同步練習冊答案