若sin2x>cos2x,則x的取值范圍是(  )
A、{x|2kπ-
3
4
π<x<2kπ+
1
4
π,k∈Z}
B、{x|2kπ+
1
4
π<x<2kπ+
5
4
π,k∈Z}
C、{x|kπ-
1
4
π<x<kπ+
1
4
π,k∈Z}
D、{x|kπ+
1
4
π<x<kπ+
3
4
π,k∈Z}
分析:sin2x>cos2x化為cos2x-sin2x<0,就是cos2x<0,然后求解不等式即可得到x的取值范圍.
解答:解:因?yàn)閟in2x>cos2x,
所以cos2x-sin2x<0,就是cos2x<0
解得:2kπ+
π
2
<2x<2kπ+
2
k∈Z
所以x的取值范圍是{x|kπ+
1
4
π<x<kπ+
3
4
π,k∈Z}

故選D.
點(diǎn)評(píng):本題考查余弦函數(shù)的單調(diào)性,二倍角的余弦,考查計(jì)算能力,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若sin2x、sinx分別是sinθ與cosθ的等差中項(xiàng)和等比中項(xiàng),則cos2x的值為:( 。
A、
1+
33
8
B、
1-
33
8
C、
33
8
D、
1-
2
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•廣東模擬)已知向量
a
=(sinx,
3
4
),
b
=(cosx,-1)

(1)當(dāng)
a
b
時(shí),求cos2x-sin2x的值;
(2)設(shè)函數(shù)f(x)=2(
a
+
b
)•
b
,已知在△ABC中,內(nèi)角A、B、C的對(duì)邊分別為a、b、c,若a=
3
,b=2,sinB=
6
3
,若f(x0)+cos(2A+
π
6
)=-
1
2
+
3
2
5
x0∈[
π
8
,
π
2
]
,求cos2x0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列四個(gè)命題,其中不正確的命題的序號(hào)是________________.

①若數(shù)列{an}的奇數(shù)項(xiàng)為2-,偶數(shù)項(xiàng)為(2+-1,則此數(shù)列既是等差數(shù)列又是等比數(shù)列  ②若數(shù)列{an}的前n項(xiàng)和Sn=an-1(a為非零常數(shù)),則{an}可以是等差數(shù)列,也可以是等比數(shù)列  ③若a,b,c是等差數(shù)列{an}的第p,q,r項(xiàng),同時(shí)又是等比數(shù)列{bn}的第p,q,r項(xiàng),則ab-c·bc-a·ca-b=1  ④若sin2x和sinx分別是sinθ和cosθ的等差中項(xiàng)和等比中項(xiàng),則cos2x=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年江西省高三年級(jí)第四次同步考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題

若sin2x、sinx分別是sinθ與cosθ的等差中項(xiàng)和等比中項(xiàng),則cos2x的值為(  )

A.   B.   C.   D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年湖北省穩(wěn)派教育高三(上)強(qiáng)化訓(xùn)練數(shù)學(xué)試卷1(理科)(解析版) 題型:選擇題

若sin2x、sinx分別是sinθ與cosθ的等差中項(xiàng)和等比中項(xiàng),則cos2x的值為:( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案