6.用數(shù)學(xué)歸納法證明f(x)=1+$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+…+$\frac{1}{{2}^{n}-1}$>$\frac{n}{2}$(n∈N*)的過程中,假設(shè)當(dāng)n=k時(shí)成立,則當(dāng)n=k+1時(shí),左邊f(xié)(k+1)=( 。
A.f(k)+$\frac{1}{{2}^{k+1}-1}$
B.f(k)+$\frac{1}{{2}^{k+1}}$
C.f(k)+$\frac{1}{{2}^{k}-1}$+$\frac{1}{{2}^{k}}$+$\frac{1}{{2}^{k}+1}$+…+$\frac{1}{{2}^{k+1}-1}$
D.f(k)+$\frac{1}{{2}^{k}}$+$\frac{1}{{2}^{k}+1}$+…+$\frac{1}{{2}^{k+1}-1}$

分析 令n=k+1代入f(n)與f(k)進(jìn)行比較即可得出答案.

解答 解:n=k時(shí),f(k)=1+$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+…+$\frac{1}{{2}^{k}-1}$,
當(dāng)n=k+1時(shí),f(k+1)=1+$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+…+$\frac{1}{{2}^{k}-1}$+$\frac{1}{{2}^{k}}$+$\frac{1}{{2}^{k}+1}$+…+$\frac{1}{{2}^{k+1}-1}$,
=f(k)+$\frac{1}{{2}^{k}}$+$\frac{1}{{2}^{k}+1}$+…+$\frac{1}{{2}^{k+1}-1}$.
故選D.

點(diǎn)評(píng) 本題考查了數(shù)學(xué)歸納法的步驟,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)$f(x)={({log_2}x)^2}-{log_2}{x^2}+3$,當(dāng)x∈[1,4]時(shí),f(x)的最大值為m,最小值為n.
(1)若角α的終邊經(jīng)過點(diǎn)P(m,n),求sinα+cosα的值;
(2)設(shè)$g(x)=mcos(nx+\frac{π}{m})-n$,h(x)=g(x)-k在$[0,\frac{π}{2}]$上有兩個(gè)不同的零點(diǎn)x1,x2,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=alnx+$\frac{1}{x-1}$,a∈R
(Ⅰ)當(dāng)a=$\frac{3}{4}$時(shí),討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)當(dāng)$a∈[\frac{1}{2},\;2\;)$時(shí),若${x_1}∈(\;0\;,\frac{1}{2}\;)$,x2∈(2,+∞),求證:f(x2)-f(x1)≥ln2+$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在y軸上,拋物線上的點(diǎn)P(m,-2)到焦點(diǎn)的距離為5,則m的值為(  )
A.±4B.±2$\sqrt{5}$C.±2$\sqrt{6}$D.±5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.在ABC中,角A,B,C所對(duì)的邊分別為a,b,c.若$sin(A+B)=\frac{1}{3}$,a=3,c=4,則sinA=$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知函數(shù)y=ln(x-4)的定義域?yàn)锳,集合B={x|x>a},若x∈A是x∈B的充分不必要條件,則實(shí)數(shù)a的取值范圍為(-∞,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知圓O:x2+y2=4及一點(diǎn)P(-1,0),Q在圓O上運(yùn)動(dòng)一周,PQ的中點(diǎn)M形成軌跡C.
(1)求軌跡C的方程;
(2)若直線PQ的斜率為1,該直線與軌跡C交于異于M的一點(diǎn)N,求△CMN的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.△ABC中,b=8,$c=8\sqrt{3}$,${S_{△ABC}}=16\sqrt{3}$,則∠A等于$\frac{π}{6}$或$\frac{5π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.如圖,設(shè)點(diǎn)A是單位圓上的一定點(diǎn),動(dòng)點(diǎn)P從點(diǎn)A出發(fā)在圓上按逆時(shí)針方向旋轉(zhuǎn)一周,點(diǎn)P所旋轉(zhuǎn)過的弧的長(zhǎng)為l,弦AP的長(zhǎng)為d,則函數(shù)d=f(l)的圖象大致是(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案