如圖,某機(jī)場建在一個(gè)海灣的半島上,飛機(jī)跑道AB的長為4.5km,且跑道所在的直線與海岸線l的夾角為60o(海岸線可以看作是直線),跑道上離海岸線距離最近的點(diǎn)B到海岸線的距離BC=4km.D為海灣一側(cè)海岸線CT上的一點(diǎn),設(shè)CD=x(km),點(diǎn)D對(duì)跑道AB的視角為q.
(1)將tanq表示為x的函數(shù);
(2)求點(diǎn)D的位置,使q取得最大值.

(1);(2)點(diǎn)距點(diǎn)6km.

解析試題分析:(1)由圖可知,因此為了求,可通過求,下面關(guān)鍵要求,為止作,垂足為,這時(shí)會(huì)發(fā)現(xiàn)隨的取值不同,點(diǎn)可能在線段上,也可能在線段外,可能為銳角也可能為鈍角,這里出現(xiàn)了分類討論,作延長線于,由已知可求出,這就是分類的分界點(diǎn);(2)由(1)求得,要求它的最大值,可以采取兩種方法,一種是由于分子是一次,分母是二次的,可把分子作為整體,分子分母同時(shí)除以(當(dāng)然分母也已經(jīng)化為的多項(xiàng)式了),再用基本不等式求解,也可用導(dǎo)數(shù)知識(shí)求得最大值.
(1)過A分別作直線CD,BC的垂線,垂足分別為E,F(xiàn).
由題知,AB=4.5,BC=4,∠ABF=90o-60o=30o,
所以CE=AF=4.5×sin30o,BF=4.5×cos30o
AE=CF=BC+BF=
因?yàn)镃D=x(x>0),所以tan∠BDC=
當(dāng)x>時(shí),ED=x-,tan∠ADC=(如圖1);

當(dāng)0<x<時(shí),ED=-x,tan∠ADC=-(如圖2).            4分
所以tanq=tan∠ADB=tan(∠ADC-∠BDC)=
,其中x>0且x≠
當(dāng)x=時(shí)tanq=,符合上式.
所以tanq=( x>0)                                      8分
(2)(方法一)tanq==,x>0.      11分
因?yàn)?(x+4)+-41≥2-41=39,
當(dāng)且僅當(dāng)4(x+4)=,即x=6時(shí)取等號(hào).
所以當(dāng)x=6時(shí),4(x+4)+-41取最小值39.
所以當(dāng)x=6時(shí),tanq取最大值.                                      13分
由于y=tanx在區(qū)間(0,)上是增函數(shù),所以當(dāng)x=6時(shí),q取最大值.
答:在海灣一側(cè)的海岸線CT上距C點(diǎn)6km處的D點(diǎn)處觀看飛機(jī)跑道的視角最大  14分
(方法二)tanq=f(x)=
f ¢(x)==-,x>0.
由f ¢(x)=0得x=6.           

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分14分)本題有2個(gè)小題,第一小題滿分6分,第二小題滿分1分.
設(shè)常數(shù),函數(shù)
(1)若=4,求函數(shù)的反函數(shù)
(2)根據(jù)的不同取值,討論函數(shù)的奇偶性,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知奇函數(shù) f (x) 在 (-¥,0)∪(0,+¥) 上有意義,且在 (0,+¥) 上是增函數(shù),f (1) = 0,又函數(shù) g(q) = sin 2q+ m cos q-2m,若集合M =" {m" | g(q) < 0},集合 N =" {m" | f [g(q)] < 0},求M∩N.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù).為常數(shù)且
(1)當(dāng)時(shí),求;
(2)若滿足,但,則稱的二階周期點(diǎn).證明函數(shù)有且僅有兩個(gè)二階周期點(diǎn),并求二階周期點(diǎn);
(3)對(duì)于(2)中的,設(shè),記的面積為,求在區(qū)間上的最大值和最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=2x+k·2-x,k∈R.
(1)若函數(shù)f(x)為奇函數(shù),求實(shí)數(shù)k的值;
(2)若對(duì)任意的x∈[0,+∞)都有f(x)>2-x成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某地方政府準(zhǔn)備在一塊面積足夠大的荒地上建一如圖所示的一個(gè)矩形綜合性休閑廣場,其總面積為3000平方米,其中場地四周(陰影部分)為通道,通道寬度均為2米,中間的三個(gè)矩形區(qū)域?qū)佋O(shè)塑膠地面作為運(yùn)動(dòng)場地(其中兩個(gè)小場地形狀相同),塑膠運(yùn)動(dòng)場地占地面積為S平方米.
(1)分別寫出用x表示y和S的函數(shù)關(guān)系式(寫出函數(shù)定義域);
(2)怎樣設(shè)計(jì)能使S取得最大值,最大值為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的左焦點(diǎn)為,左、右頂點(diǎn)分別為,過點(diǎn)且傾斜角為的直線交橢圓于兩點(diǎn),橢圓的離心率為,
(1)求橢圓的方程;
(2)若是橢圓上不同兩點(diǎn),軸,圓過點(diǎn),且橢圓上任意一點(diǎn)都不在圓內(nèi),則稱圓為該橢圓的內(nèi)切圓.問橢圓是否存在過點(diǎn)的內(nèi)切圓?若存在,求出點(diǎn)的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

己知函數(shù),在處取最小值.
(1)求的值;
(2)在中,分別是的對(duì)邊,已知,求角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某通訊公司需要在三角形地帶區(qū)域內(nèi)建造甲、乙兩種通信信號(hào)加強(qiáng)中轉(zhuǎn)站,甲中轉(zhuǎn)站建在區(qū)域內(nèi),乙中轉(zhuǎn)站建在區(qū)域內(nèi).分界線固定,且=百米,邊界線始終過點(diǎn),邊界線滿足
設(shè)()百米,百米.

(1)試將表示成的函數(shù),并求出函數(shù)的解析式;
(2)當(dāng)取何值時(shí)?整個(gè)中轉(zhuǎn)站的占地面積最小,并求出其面積的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案