計(jì)算:10lga-10•ln1+πlogπb的值.
考點(diǎn):對數(shù)的運(yùn)算性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:直接利用對數(shù)的運(yùn)算法則,化簡求值即可.
解答: 解:10lga-10•ln1+πlogπb=a-10×0+b=a+b.
∴10lga-10•ln1+πlogπb的值為:a+b.
點(diǎn)評(píng):本題考查對數(shù)的運(yùn)算性質(zhì),基本知識(shí)的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
x+2
x+2
的定義域?yàn)?div id="n9abjzo" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集合{a,b}的子集有( 。
A、2個(gè)B、3個(gè)C、4個(gè)D、5個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知p:關(guān)于x的方程x2-3ax+2a+1=0的兩根均大于3,q:A={x|x2-2x+a>0}且1∉A,
(1)求使p成立的充要條件;
(2)若p∨q為真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求圓x2+y2=25過點(diǎn)B(-5,2)的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=32x+2•3x-3的值域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x+
4
x

(1)求函數(shù)f(x)定義域;
(2)判斷并證明函數(shù)f(x)=x+
4
x
的奇偶性
(3)證明函數(shù)f(x)=x+
4
x
在x∈[2,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓的極坐標(biāo)方程為:ρ2-4
2
ρcos(θ-
π
4
)+6=0.
(Ⅰ)將極坐標(biāo)方程化為普通方程;并選擇恰當(dāng)?shù)膮?shù)寫出它的參數(shù)方程;
(Ⅱ)若點(diǎn)P(x,y)在該圓上,求x+y的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線C1:y2=2px(p>0),圓C2與y軸相切,其圓心是拋物線的焦點(diǎn),點(diǎn)M是拋物線的準(zhǔn)線與x軸的交點(diǎn),點(diǎn)N是圓C2上的任意一點(diǎn),且線段MN長度的最大值為3,直線l過拋物線C1的焦點(diǎn),與C1交于A、D兩點(diǎn),與C2交于B、C兩點(diǎn).
(Ⅰ)求C1與C2的方程;
(Ⅱ)是否存在直線l,使得kOA+kOB+kOC+kOD=3
2
(其中O為坐標(biāo)原點(diǎn)),且|AB|,|BC|,|CD|依次成等差數(shù)列?若存在,求出所有滿足條件的直線l;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案