在三角形ABC中,已知A(-1,0),C(1,0),且sinA+sinC=2sinB,動點(diǎn)B的軌跡方程(  )
A.
x2
3
+
y2
4
=1(x<0)
B.
x2
3
+
y2
4
=1(y≠0)
C.
x2
4
+
y2
3
=1(y≠0)
D.
x2
4
+
y2
3
=1(x<0)
利用正弦定理,可得BA+BC=2AC=4>AC,根據(jù)橢圓的定義可知所求軌跡為橢圓(到兩定點(diǎn)的距離為定值),方程為
x2
4
+
y2
3
=1
,又A,B,C構(gòu)成三角形,所以y≠0,
故選C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓C∶=1(a>b>0)過點(diǎn)(0,4),離心率為.
(1)求C的方程;
(2)求過點(diǎn)(3,0)且斜率為的直線被C所截線段的中點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)A,B分別為橢圓=1(a>b>0)的左、右頂點(diǎn),(1,)為橢圓上一點(diǎn),橢圓長半軸長等于焦距.
(1)求橢圓的方程;
(2)設(shè)P(4,x)(x≠0),若直線AP,BP分別與橢圓相交于異于A,B的點(diǎn)M,N,求證:∠MBN為鈍角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

一條線段的長等于10,兩端點(diǎn)A、B分別在x軸和y軸上滑動,M在線段AB上且
AM
=4
MB
,則點(diǎn)M的軌跡方程是( 。
A.x2+16y2=64B.16x2+y2=64C.x2+16y2=8D.16x2+y2=8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓C:x2+(y-1)2=5,直線l:mx-y+1-m=0.
(1)判斷直線l與圓C的位置關(guān)系;
(2)設(shè)l與圓C交與不同兩點(diǎn)A、B,求弦AB的中點(diǎn)M的軌跡方程;
(3)若定點(diǎn)P(1,1)分弦AB為
AP
PB
=
1
2
,求此時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

平面直角坐標(biāo)系中,已知A(-2,0),B(2,0),C(1,0),P是x軸上任意一點(diǎn),平面上點(diǎn)M滿足:
PM
PB
CM
CB
對任意P恒成立,則點(diǎn)M的軌跡方程為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若動點(diǎn)M到定點(diǎn)F1(0,-1)、F2(0,1)的距離之和為2,則點(diǎn)M的軌跡為( 。
A.橢圓B.直線F1F2
C.線段F1F2D.直線F1F2的垂直平分線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點(diǎn)A(-2,0),B(1,0),平面內(nèi)的動點(diǎn)P滿足|PA|=λ|PB|(λ為常數(shù),λ>0).
(1)求點(diǎn)P的軌跡E的方程,并指出其表示的曲線的形狀.
(2)當(dāng)λ=2時,P的軌跡E與x軸交于C、D兩點(diǎn),M是軌跡上異于C、D的任意一點(diǎn),直線l:x=-3,直線CM與直線l交于點(diǎn)C′,直線DM與直線l交于點(diǎn)D'.求證:以C′D′為直徑的圓總過定點(diǎn),并求出定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

從橢圓短軸的一個端點(diǎn)看長軸的兩個端點(diǎn)的視角為,那么此橢圓的離心率為(   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案