曲線y=xex-1在點(1,1)處切線的斜率等于(  )
A、2eB、eC、2D、1
考點:導(dǎo)數(shù)的幾何意義
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:求函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)的幾何意義即可求出對應(yīng)的切線斜率.
解答:解:函數(shù)的導(dǎo)數(shù)為f′(x)=ex-1+xex-1=(1+x)ex-1,
當x=1時,f′(1)=2,
即曲線y=xex-1在點(1,1)處切線的斜率k=f′(1)=2,
故選:C.
點評:本題主要考查導(dǎo)數(shù)的幾何意義,直接求函數(shù)的導(dǎo)數(shù)是解決本題的關(guān)鍵,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

兩平行直線x+y-1=0與2x+2y+1=0的距離是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知球的直徑PQ=4,A、B、C是該球球面上的三點,∠APQ=∠BPQ=∠CPQ=30°,△ABC是正三角形,則棱錐P-ABC的體積為( 。
A、
3
3
4
B、
9
3
4
C、
3
3
2
D、
27
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}的通項公式為an=3n+2(n∈N*),則該數(shù)列的公比是( 。
A、
1
9
B、9
C、
1
3
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①在△ABC中,若A<B,則sinA<sinB;
②將函數(shù)y=sin(2x+
π
3
)圖象向右平移
π
3
個單位,得到函數(shù)y=sin2x的圖象;
③在△ABC中,若AB=2,AC=3,∠ABC=
π
3
,則△ABC必為銳角三角形;
④在同一坐標系中,函數(shù)y=sinx的圖象和函數(shù)y=
x
2
的圖象有三個公共點;
其中真命題是( 。
A、①③B、①②
C、②③④D、①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,棱長為1的正方體ABCD-A1B1C1D1,點M在與正方體的各棱都相切的球面上運動,點N在三角形ACB1的外接圓上運動,則線段MN長度的最小值是( 。
A、
3
-1
2
B、
2
-1
2
C、
3
-
2
2
D、
3
-
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三棱錐S-ABC的所有頂點都在球O的表面上,SA⊥平面ABC,AB⊥BC,又SA=AB=BC=1,則球O的表面積為( 。
A、
3
2
π
B、
3
2
π
C、3π
D、12π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)三棱柱的側(cè)棱垂直與底面,所有棱的長都為2
3
,頂點都在一個球面上,則該球的表面積為( 。
A、12πB、28π
C、44πD、60π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線y=kx+b上兩點P、Q的橫坐標分別為x1、x2,則|PQ|為( 。
A、|x1 -x2|•
1+k2
B、|x1 -x2|•|k|
C、
|x1-x2|
1+k2
D、
|x1-x2|
|k|

查看答案和解析>>

同步練習(xí)冊答案