分析 設(shè)P(x,y)為橢圓上的動點,由于橢圓方程可得-4≤x≤4.由|MP2=(x-m)2+y2=(x-m)2+12(1-$\frac{{x}^{2}}{16}$)=$\frac{1}{4}$(x-4m)2+12-3m2
,結(jié)合二次函數(shù)的性質(zhì)及橢圓的性質(zhì)可知,取得最小值4m≥4,結(jié)合點M在橢圓的長軸上,可求m得范圍
解答 解:設(shè)P(x,y)為橢圓上的動點,由于橢圓方程為$\frac{x^2}{16}+\frac{y^2}{12}=1$,故-4≤x≤4.
|MP2=(x-m)2+y2=(x-m)2+12(1-$\frac{{x}^{2}}{16}$)=$\frac{1}{4}$(x-4m)2+12-3m2
∵當(dāng)|MP|最小時,點P恰好落在橢圓的右頂點,即當(dāng)x=4時,|MP|2取得最小值,而x∈[-4,4],
故有4m≥4,解得m≥1.
又點M在橢圓的長軸上,所以-4≤m≤4.故實數(shù)m的取值范圍是[1,4].
故答案為:1≤m≤4.
點評 本本題主要考查了橢圓的性質(zhì)的應(yīng)用,解題中要注意橢圓的范圍與二次函數(shù)的性質(zhì)的應(yīng)用是解決本題的關(guān)鍵.屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4\sqrt{2}-7}{9}$ | B. | $\frac{-4\sqrt{2}-7}{9}$ | C. | $\frac{4-7\sqrt{2}}{9}$ | D. | $\frac{-4-7\sqrt{2}}{9}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com