5.已知橢圓的兩焦點(diǎn)為F1(0,-1)、F2(0,1),直線y=4是橢圓的一條準(zhǔn)線.求橢圓方程.

分析 由題意得橢圓的方程為$\frac{{x}^{2}}{{a}^{2}-1}+\frac{{y}^{2}}{{a}^{2}}=1$,再由直線y=4是橢圓的一條準(zhǔn)線,能求出橢圓方程.

解答 解:∵橢圓的兩焦點(diǎn)為F1(0,-1)、F2(0,1),
∴橢圓的方程為$\frac{{x}^{2}}{{a}^{2}-1}+\frac{{y}^{2}}{{a}^{2}}=1$,
∵直線y=4是橢圓的一條準(zhǔn)線,
∴a2=4.
∴橢圓方程為$\frac{{x}^{2}}{3}+\frac{{y}^{2}}{4}=1$.

點(diǎn)評 本題考查橢圓方程的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意橢圓性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.直線3x+4y+10=0和圓$\left\{{\begin{array}{l}{x=2+5cosθ}\\{y=1+5sinθ}\end{array}}\right.$的位置關(guān)系是( 。
A.相切B.相離C.相交但不過圓心D.相交且過圓心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)圓C的圓心是拋物線y=$\frac{1}{4}$x2的焦點(diǎn),且與直線x+y+3=0相切,則圓C的方程是x2+(y-1)2=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)在左焦點(diǎn)為F1(-c,0),有頂點(diǎn)為A,上頂點(diǎn)為B,現(xiàn)過A點(diǎn)作直線F1B的垂線,垂足為T,若直線OT(O為坐標(biāo)原點(diǎn))的斜率為-$\frac{3b}{c}$,則該橢圓的離心率的值為( 。
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知空間中非零向量$\overrightarrow{a}$,$\overrightarrow$不共線,并且模相等,則$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-$\overrightarrow$之間的關(guān)系是( 。
A.垂直B.共線C.不垂直D.以上都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.從向陽小區(qū)抽取100戶居民進(jìn)行月用電量調(diào)查,為制定階梯電價(jià)提供數(shù)據(jù),發(fā)現(xiàn)其用電量都在50到350度之間,制作頻率分布直方圖的工作人員粗心大意,位置t處未標(biāo)明數(shù)據(jù),你認(rèn)為t=(  )
A.0.0041B.0.0042C.0.0043D.0.0044

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù){an}:a1=t,n2Sn+1=n2(Sn+an)+an2,n=1,2,….
(1)設(shè){an}為等差數(shù)列,且前兩項(xiàng)和S2=3,求t的值;
(2)若t=$\frac{1}{3}$,證明:$\frac{n}{2n+1}$≤an<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知△ABC中,∠A:∠B=1:2,a:b=1:$\sqrt{3}$,求△ABC的三個(gè)內(nèi)角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.雙曲線的一條漸近線方程是y=$\frac{4}{3}$x,一個(gè)焦點(diǎn)坐標(biāo)為(-10,0),求它的標(biāo)準(zhǔn)方程,并求出它的實(shí)軸長,虛軸長和離心率.

查看答案和解析>>

同步練習(xí)冊答案