13.已知函數(shù)f(x)=2sinxcosx-$\sqrt{3}$(cos2x-sin2x).
(1)求f(x)的最小正周期;
(2)若f(x0)=$\sqrt{3}$,且x0∈[$\frac{π}{4}$,$\frac{π}{2}$],求x0的值.

分析 (1)利用三角函數(shù)的恒等變換、正弦函數(shù)的周期性求得f(x)的最小正周期.
(2)由題意利用f(x0)=$\sqrt{3}$,且x0∈[$\frac{π}{4}$,$\frac{π}{2}$],求得x0的值.

解答 解:(1)∵函數(shù)f(x)=2sinxcosx-$\sqrt{3}$(cos2x-sin2x)=sin2x-$\sqrt{3}$cos2x=2sin(2x-$\frac{π}{3}$),
∴函數(shù)f(x)的最小正周期為$\frac{2π}{2}$=π.
(2)若f(x0)=2sin(2x0-$\frac{π}{3}$)=$\sqrt{3}$,且x0∈[$\frac{π}{4}$,$\frac{π}{2}$],則 2x0-$\frac{π}{3}$∈[$\frac{π}{6}$,$\frac{2π}{3}$],
∴2x0-$\frac{π}{3}$=$\frac{π}{3}$,或 2x0-$\frac{π}{3}$=$\frac{2π}{3}$,∴x0 =$\frac{π}{3}$,或 x0 =$\frac{π}{2}$.

點評 本題主要考查三角函數(shù)的恒等變換及化簡求值,三角函數(shù)的周期性和求法,根據(jù)三角函數(shù)的值求角,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知梯形ABCD中,∠ABC=∠BAD=$\frac{π}{2}$,AB=BC=1,AD=2,P是DC的中點,則|$\overrightarrow{PA}$+2$\overrightarrow{PB}$|=(  )
A.$\frac{\sqrt{82}}{2}$B.2$\sqrt{5}$C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某冰淇淋店要派車到100千米外的冷飲加工廠原料,再加工成冰淇淋后售出,已知汽車每小時的運行成本F(單位:元)與其自重m(包括車子、駕駛員及所載貨物等的質(zhì)量,單位:千克)和車速v(單位:千米/小時)之間滿足關(guān)系式:$F=\frac{1}{1600}m{v^2}$.在運輸途中,每千克冷飲每小時的冷藏費為10元,每千克冷飲經(jīng)過冰淇淋店再加工后,可獲利100元.若汽車重量(包括駕駛員等,不含貨物)為1.3噸,最大載重為1噸.汽車來回的速度為v(單位:千米/小時),且最大車速為80千米,一次進貨x千克,而且冰淇淋供不應(yīng)求.
(1)求冰淇淋店進一次貨,經(jīng)加工售賣后所得凈利潤w與車速v和進貨量x之間的關(guān)系式;
(2)每次至少進貨多少千克,才能使得銷售后不會虧本(凈利潤w≥0)?
(3)當(dāng)一次進貨量x與車速v分別為多少時,能使得冰淇淋店有最大凈利潤?并求出最大值.(提示:${({\sqrt{x+b}})^′}=\frac{1}{{2\sqrt{x+b}}}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在區(qū)間[-$\frac{π}{2}$,$\frac{π}{2}$]上隨機取一個數(shù)x,cos2$\frac{x}{2}$-sin2$\frac{x}{2}$的值介于0和$\frac{1}{2}$之間的概率為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,四棱錐P-ABCD中,底面ABCD是矩形,平面PAD⊥平面ABCD,且△PAD是邊長為2的等邊三角形,$PC=\sqrt{13}$,點M是PC的中點.
(I)求證:PA∥平面MBD;
(II)求四面體P-BDM的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知四棱錐S-ABCD的底面為平行四邊形SD⊥面ABCD,SD=1,AB=2,AD=1,∠DAB=60°,M、N分別為SB、SC中點,過MN作平面MNPQ分別與線段CD、AB相交于點P、Q.
(1)在圖中作出平面MNPQ,使面MNPQ∥面SAD,并指出P、Q的位置
(不要求證明);
(2)若$\overrightarrow{AQ}=\frac{1}{3}\overrightarrow{AB}$,求二面角M-PQ-B的平面角大小?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知圓A:x2+y2+2x-15=0,過點B(1,0)作直線l(與x軸不重合)交圓A于C,D兩點,過B作AC的平行線交AD于點E.
(Ⅰ) 求點E的軌跡方程;
(Ⅱ)動點M在曲線E上,動點N在直線$l:y=2\sqrt{3}$上,若OM⊥ON,求證:原點O到直線MN的距離是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,三棱柱ABC-A1B1C1中,AB=AC=CC1,平面BAC1⊥平面ACC1A1,∠ACC1=∠BAC1=60°,AC1∩A1C=O.
(Ⅰ)求證:BO⊥平面AA1C1C;
(Ⅱ)求二面角A-BC1-B1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知$\overrightarrow a=(1\;,\;3)$,$\overrightarrow b=(-2\;,\;5)$,則$3\overrightarrow a-2\overrightarrow b$=(  )
A.(2,7)B.(13,-7)C.(7,-1)D.(-1,-1)

查看答案和解析>>

同步練習(xí)冊答案