A. | [$\frac{1}{6}$,$\frac{1}{\root{3}{16}}$] | B. | [$\frac{1}{6}$,$\frac{1}{4}$] | C. | [$\frac{1}{9}$,$\frac{1}{\root{3}{16}}$] | D. | [$\frac{1}{9}$,$\frac{1}{4}$] |
分析 根據(jù)對任意x1,x2∈[-1,1],都有|f3(x1)-f3(x2)|≤1,說明當(dāng)x取兩個特殊值-1和1時|f3(1)-f3(-1)|≤1成立,由此求出a的初步范圍,然后把原函數(shù)f3(x)求導(dǎo),得到導(dǎo)函數(shù)的兩個零點為-$\sqrt{a}$,$\sqrt{a}$,再求出函數(shù)f3(x)在(-1,1)上的極大值和極小值,再由極大值和極小值差的絕對值小于等于1求出a的取值范圍,和由|f3(1)-f3(-1)|≤1求出的a的范圍取交集即可
解答 解:因為對任意x1,x2∈[-1,1],都有|f3(x1)-f3(x2)|≤1,
所以|f3(1)-f3(-1)|≤1,從而有|(-1+3a)-(1-3a)|=|6a-2|≤1,
所以$\frac{1}{6}$≤a≤$\frac{1}{2}$.
又f3′(x)=-3(x2-a),
在[-1,-$\sqrt{a}$],[$\sqrt{a}$,1]內(nèi)f′3(x)<0,
所以f3(x)在[-1,-$\sqrt{a}$],[$\sqrt{a}$,1]內(nèi)為減函數(shù),
f3(x)在[-$\sqrt{a}$,$\sqrt{a}$]內(nèi)為增函數(shù),
只需|f3($\sqrt{a}$)-f3($\sqrt{a}$)|≤1
化簡可得4a$\sqrt{a}$≤1,解得:a≤$\frac{1}{\root{3}{16}}$.
所以a的取值范圍是$\frac{1}{6}$≤a≤$\frac{1}{\root{3}{16}}$.
故選:A.
點評 本題考查了利用導(dǎo)數(shù)研究函數(shù)的最值,考查了數(shù)學(xué)轉(zhuǎn)化思想方法,屬有一定難度題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,+∞) | B. | (-∞,$\frac{3}{4}$] | C. | ($\frac{1}{2}$,+∞) | D. | [$\frac{3}{4}$,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com