【題目】太極圖是由黑白兩個魚形紋組成的圖案,俗稱陰陽魚,太極圖展現(xiàn)了一種相互轉(zhuǎn)化,相互統(tǒng)一的和諧美.定義:能夠?qū)AO的周長和面積同時等分成兩部分的函數(shù)稱為圓煌一個“太極函數(shù)”下列有關(guān)說法中:
①對圓O:x2+y2=1的所有非常數(shù)函數(shù)的太極函數(shù)中,一定不能為偶函數(shù);
②函數(shù)f(x)=sinx+1是圓O:x2+(y﹣1)2=1的一個太極函數(shù);
③存在圓O,使得f(x)= 是圓O的太極函數(shù);
④直線(m+1)x﹣(2m+1)y﹣1=0所對應(yīng)的函數(shù)一定是圓O:(x﹣2)2+(y﹣1)2=R2(R>0)的太極函數(shù).
所有正確說法的序號是

【答案】②④
【解析】解:對①顯然錯誤,如圖

對②,點(0,1)均為兩曲線的對稱中心,且f(x)=sinx+1能把圓x2+(y﹣1)2=1一分為二,正確;

對③,函數(shù)為奇函數(shù)f(x)= =1+ ,當(dāng)x→0(x>0)時,

f(x)→+∞,

當(dāng)x→+∞時,f(x)→1,[f(x)>1],函數(shù)遞減;

當(dāng)x→0(x<0)時,f(x)→﹣∞,

當(dāng)x→﹣∞時,f(x)→﹣1,[f(x)<﹣1],

函數(shù)f(x)關(guān)于(0,0)中心對稱,有三條漸近線y=±1,x=0,

可知,函數(shù)的對稱中心為間斷點,故不存在圓使得滿足題干條件.③不正確;

對于④直線(m+1)x﹣(2m+1)y﹣1=0恒過定點(2,1)的直線,經(jīng)過圓的圓心,滿足題意.④正確;

故所有正確的是②④.

所以答案是:②④.

【考點精析】掌握函數(shù)的圖象和命題的真假判斷與應(yīng)用是解答本題的根本,需要知道函數(shù)的圖像是由直角坐標(biāo)系中的一系列點組成;圖像上每一點坐標(biāo)(x,y)代表了函數(shù)的一對對應(yīng)值,他的橫坐標(biāo)x表示自變量的某個值,縱坐標(biāo)y表示與它對應(yīng)的函數(shù)值;兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知α∈(0, ),β∈(0, ),且滿足 cos2 + sin2 = + ,sin(2017π﹣α)= cos( π﹣β),則α+β=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線 上一點且縱坐標(biāo)為 , 上的兩個動點,且

(1)求過點 ,且與 恰有一個公共點的直線 的方程;
(2)求證: 過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,已知sin2
(Ⅰ) 求角A的大小;
(Ⅱ) 若b+c=2,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù) (a∈R).
(1)求f(x)的單調(diào)區(qū)間;
(2)曲線y=xf(x) 是否存在經(jīng)過原點的切線,若存在,求出該切線方程,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點A是圓C:x2+y2+ax+4y+10=0上任意一點,點A關(guān)于直線x+2y-1=0的對稱點也在圓C上,則實數(shù)a的值為( )
A.10
B.-10
C.-4
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓x2+y2+x-6y+m=0與直線x+2y-3=0相交于P、Q兩點,O為原點,且OP⊥OQ,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高一共有10個班,編號1至10,某項調(diào)查要從中抽取三個班作為樣本,現(xiàn)用抽簽法抽取樣本,每次抽取一個號碼,共抽3次,設(shè)五班第一次抽到的可能性為a,第二次被抽到的可能性為b,則( )
A.a= ,b=
B.a= ,b=
C.a= ,b=
D.a= ,b=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知i是虛數(shù)單位,a,b∈R,z1=a﹣1+(3﹣a)i,z2=b+(2b﹣1)i,z1=z2
(1)求a,b的值;
(2)若z=m﹣2+(1﹣m)i,m∈R,求證:|z+a+bi|≥

查看答案和解析>>

同步練習(xí)冊答案