(本小題12分)某產(chǎn)品原來的成本為1000元/件,售價(jià)為1200元/件,年銷售量為1萬件。由于市場(chǎng)飽和顧客要求提高,公司計(jì)劃投入資金進(jìn)行產(chǎn)品升級(jí)。據(jù)市場(chǎng)調(diào)查,若投入萬元,每件產(chǎn)品的成本將降低元,在售價(jià)不變的情況下,年銷售量將減少萬件,按上述方式進(jìn)行產(chǎn)品升級(jí)和銷售,扣除產(chǎn)品升級(jí)資金后的純利潤(rùn)記為(單位:萬元).(純利潤(rùn)=每件的利潤(rùn)×年銷售量-投入的成本)
(Ⅰ)求的函數(shù)解析式;
(Ⅱ)求的最大值,以及取得最大值時(shí)的值.
(1)(2)的最大值為萬元,萬元
解析試題分析:⑴依題意,產(chǎn)品升級(jí)后,每件的成本為元,利潤(rùn)為元
年銷售量為萬件 ……3分,
純利潤(rùn)為 ……5分,
……7分
⑵ ……9分,
……10分,
等號(hào)當(dāng)且僅當(dāng) ……11分,
即(萬元) ……12分
考點(diǎn):本小題主要考查以基本不等式為工具求函數(shù)的最值.
點(diǎn)評(píng):求解這種實(shí)際問題時(shí),首先要耐心讀懂題目,根據(jù)題目寫出函數(shù)解析式,并且注意實(shí)際問題的定義域;利用基本不等式求最值時(shí),要注意基本不等式成立的條件:一正二定三相等.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題共12分)水庫(kù)的蓄水量隨時(shí)間而變化,現(xiàn)用t表示時(shí)間,以月為單位,年初為起點(diǎn),根據(jù)歷年數(shù)據(jù),某水庫(kù)的蓄水量(單位:億立方米)關(guān)于t的近似函數(shù)關(guān)系式為
V(t)=
(Ⅰ)該水庫(kù)的蓄水量小于50的時(shí)期稱為枯水期.以i-1<t<i表示第i月份(i=1,2,…,12),問一年內(nèi)哪幾個(gè)月份是枯水期?
(Ⅱ)求一年內(nèi)該水庫(kù)的最大蓄水量(取e=2.7計(jì)算).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)已知且,設(shè)函數(shù)= ax2 +x-3alnx.
(I)求函數(shù)的單調(diào)區(qū)間;
(II)當(dāng)a=-1時(shí),證明:≤2x-2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(文科題)(本小題12分)
要建造一個(gè)無蓋長(zhǎng)方體水池,底面一邊長(zhǎng)固定為8m,最大裝水量為72m,池底和池壁的造價(jià)分別為2元/、元/,怎樣設(shè)計(jì)水池底的另一邊長(zhǎng)和水池的高,才能使水池的總造價(jià)最低?最低造價(jià)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
設(shè)平面直角坐標(biāo)系中,設(shè)二次函數(shù)的圖象與兩坐標(biāo)軸有三個(gè)交點(diǎn),經(jīng)過這三個(gè)交點(diǎn)的圓記為.求:
(Ⅰ)求實(shí)數(shù)的取值范圍;
(Ⅱ)求圓的方程;
(Ⅲ)問圓是否經(jīng)過某定點(diǎn)(其坐標(biāo)與b 無關(guān))?請(qǐng)證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)某公司生產(chǎn)的新產(chǎn)品的成本是2元/件,售價(jià)是3元/件,
年銷售量為10萬件,為了獲得更好的效益,公司準(zhǔn)備拿出一定的資金做廣告,根據(jù)經(jīng)驗(yàn),每年投入的廣告費(fèi)是(萬元)時(shí),產(chǎn)品的銷售量將是原銷售量的倍,且是的二次函數(shù),它們的關(guān)系如下表:
··· | 1 | 2 | ··· | 5 | ··· | |
··· | 1.5 | 1.8 | ··· | 1.5 | ··· |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(14分)病人按規(guī)定的劑量服用某藥物,測(cè)得服藥后,每毫升血液中含藥量(毫克)與時(shí)間(小時(shí))滿足:前1小時(shí)內(nèi)成正比例遞增,1小時(shí)后按指數(shù)型函數(shù)(為常數(shù))衰減.如圖是病人按規(guī)定的劑量服用該藥物后,每毫升血液中藥物含量隨時(shí)間變化的曲線.
(1)求函數(shù)的解析式;
(2)已知每毫升血液中含藥量不低于0.5毫克時(shí)有治療效果,低于0.5毫克時(shí)無治療效果.求病人一次服藥后的有效治療時(shí)間為多少小時(shí)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知f(x)=logax,g(x)=2loga(2x+t-2)(a>0,a≠1,t∈R).
(1)當(dāng)t=4,x∈[1,2],且F(x)=g(x)-f(x)有最小值2時(shí),求a的值;
(2)當(dāng)0<a<1,x∈[1,2]時(shí),有f(x)≥g(x)恒成立,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com