12.由變量x與y相對(duì)應(yīng)的一組數(shù)據(jù)(3,y1),(5,y2),(7,y3),(12,y4),(13,y5),得到的線(xiàn)性回歸方程為$\widehat{y}$=$\frac{1}{2}$x+20,則$\overline{y}$=(  )
A.26B.23.5C.23D.24

分析 利用回歸直線(xiàn)方程恒過(guò)樣本中心點(diǎn),即可得出結(jié)論.

解答 解:由題意,$\overline{x}$=$\frac{3+5+7+12+13}{5}$=8,
代入線(xiàn)性回歸方程為$\widehat{y}$=$\frac{1}{2}$x+20,可得$\overline{y}$=$\frac{1}{2}×8+20$=24,
故選:D.

點(diǎn)評(píng) 本題考查數(shù)據(jù)的回歸直線(xiàn)方程,利用回歸直線(xiàn)方程恒過(guò)樣本中心點(diǎn)是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{2x-a,x≥1}\\{{e^x},x≤-1}\end{array}}$的圖象上存在關(guān)于y軸的對(duì)稱(chēng)點(diǎn),則a的取值范圍是(  )
A.(-∞,$\frac{1}{e}$-1)B.(-∞,2-$\frac{1}{e}$)C.[$\frac{1}{e}$-1,+∞)D.[2-$\frac{1}{e}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.一個(gè)多面體的直觀(guān)圖、三視圖如圖所示,則該多面體的表面積為(  )
A.3a2B.5a2C.$\frac{9}{2}$a2D.$\frac{11}{2}$a2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.函數(shù)f(x)=$\frac{1}{\sqrt{4-{x}^{2}}}$+lnx的定義域?yàn)椋?,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.某統(tǒng)計(jì)局為了調(diào)查居民支出狀況,隨機(jī)調(diào)查該市10戶(hù)家庭的三類(lèi)支出:食品消費(fèi)類(lèi)支出,衣著消費(fèi)類(lèi)支出、居住消費(fèi)類(lèi)支出,每類(lèi)支出都分為A、B、C三個(gè)等級(jí),現(xiàn)在對(duì)三種等級(jí)進(jìn)行量化:A級(jí)記為2分;B級(jí)記為1分;C級(jí)記為0分,用(x,y,z)表示該家庭的食品消費(fèi)類(lèi)支出、衣著消費(fèi)類(lèi)支出、居住消費(fèi)類(lèi)支出的得分情況,再用綜合指標(biāo)ω=x+y+z的值評(píng)定該家庭的得分等級(jí):若ω≥4,則得分等級(jí)為一級(jí);若2≤ω≤3,則得分等級(jí)為二級(jí);若0≤ω≤1,則得分等級(jí)為三級(jí),得到如下結(jié)果:
家庭編號(hào)A1A2A3A4A5A6A7A8A9A10
(x,y,z)(1,1,2)(2,1,1)(2,2,2)(0,0,1)(1,2,1)(1,2,2)(1,1,1)(1,2,2)(1,2,1)(1,1,1)
(1)在這10戶(hù)家庭中任取兩戶(hù),求這兩戶(hù)家庭居住消費(fèi)類(lèi)支出得分相同的概率;
(2)從得分等級(jí)是一級(jí)的家庭中任取一戶(hù),其綜合指標(biāo)為a,從得分等級(jí)不是一級(jí)的家庭中任取一戶(hù),其綜合指標(biāo)為b,記隨機(jī)變量X=a-b,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.設(shè)m、n是不同的直線(xiàn),α、β、γ是不同的平面,有以下四個(gè)命題:
①若α∥β,α∥γ,則β∥γ;
②若α⊥β,m∥α,則m⊥β;           
③若m⊥α,m∥β,則α⊥β;       
④若m∥n,m∥α,則n∥α.
其中真命題的序號(hào)是①③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=$\sqrt{3}$sin2x+2cos2x+m(0≤x≤$\frac{π}{2}$).
(1)若函數(shù)f(x)的最大值為6,求常數(shù)m的值;
(2)若函數(shù)f(x)有兩個(gè)零點(diǎn)x1和x2,求m的取值范圍,并求x1和x2的值;
(3)在(1)的條件下,若g(x)=(t-1)f(x)-$\frac{3sinx-\sqrt{3}cosx}{\sqrt{3}cosx+sinx}$(t≥2),討論函數(shù)g(x)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知某個(gè)幾何體的三視圖如圖所示,根據(jù)圖中標(biāo)出的尺寸,可得這個(gè)幾何體的側(cè)面積為( 。
A.B.C.12πD.16π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖,在三棱椎P-ABC中,PA=PB=PC=AC=4,AB=BC=2$\sqrt{2}$.
(Ⅰ)求證:平面ABC⊥平面APC.
(Ⅱ)若動(dòng)點(diǎn)M在底面三角形ABC內(nèi)(包括邊界)運(yùn)動(dòng),使二面角M-PA-C的余弦值為$\frac{3\sqrt{93}}{31}$,求此時(shí)∠MAB的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案