已知f(x)=x3+ax2-a2x+2.
(1)若a=1,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)若a>0,求函數(shù)f(x)的單調(diào)區(qū)間.
考點:利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,利用導(dǎo)數(shù)研究曲線上某點切線方程
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)先求出函數(shù)的表達式,通過求導(dǎo)得出斜率k的值,再求出切點坐標(biāo),從而求出切線方程;
(2)先求出函數(shù)的導(dǎo)數(shù),分別令f′(x)>0,f′(x)<0,從而求出函數(shù)的單調(diào)區(qū)間.
解答: 解:(1)∵a=1,∴f(x)=x3+x2-x+2,
∴f′(x)=3x2+2x-1
∴k=f′(1)=4,又f(1)=3,
∴切點坐標(biāo)為(1,3),
∴所求切線方程為y-3=4(x-1),
即4x-y-1=0.
(2)f′(x)=3x2+2ax-a2=(x+a)(3x-a)
由f′(x)=0得x=-a或x=
a
3
,
∵a>0,由f′(x)<0,得-a<x<
a
3
,
由f′(x)>0,得x<-a或x>
a
3

此時f(x)的單調(diào)遞減區(qū)間為(-a,
a
3
)
,單調(diào)遞增區(qū)間為(-∞,-a)和(
a
3
,+∞)
點評:本題考查了導(dǎo)數(shù)的應(yīng)用,求曲線的切線方程,考查了函數(shù)的單調(diào)性,是一道基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,a8=
1
2
a11+6,則數(shù)列{an}前9項的和S9=( 。
A、24B、48C、72D、108

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正方體ABCD-A1B1C1D1中,E,F(xiàn)分別為D1C1,B1C1的中點
(1)求證:D,B,F(xiàn),E四點共面;
(2)AC∩BD=G,A1C1∩EF=N,A1C交平面DBFE于M點,求證:G,N,M三點共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正四棱柱ABCD-A1B1C1D1中,E,F(xiàn)分別是AB1,BC1的中點,則下列結(jié)論不成立的是
 

①EF與BB1垂直;②EF與BD垂直;③EF與CD異面;④EF與A1C1異面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖(1),PD是四棱錐P-ABCD的高,AB∥DC,AB⊥AD,BC=5,DC=3,AD=4,∠PAD=60°

(1)當(dāng)正視方向與向量
AD
的方向相同時,畫出四棱錐P-ABCD的正視圖(要求標(biāo)出尺寸,并寫出演算過程)
(2)如圖(2),E為PA的中點,G是CB上任意一點,過E,D,G三點的平面與側(cè)面PCB交于GH.
①證明:ED∥平面PCB
②判斷四邊形EDGH的形狀,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|y=(2x-16)
1
2
},集合B={x|y=
2x-1
2x+1
},集合C={x|a-1<x<2a+1}.
(1)求A,(∁RA)∩B;
(2)若A∩C≠C,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式1-
3
x+a
<0的解集為(-1,2),則
3
a
(1-
3
x÷a
)dx=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}中,a2,a3,a4分別是某等差數(shù)列的第5項、第3項、第2項,且a1=64,公比q≠1.
(Ⅰ)求an;
(Ⅱ)設(shè)bn=log2an,求數(shù)列{|bn|}的前n項和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知2tanβ=tan2α,tan(β-α)=-2
2
,求tanα.

查看答案和解析>>

同步練習(xí)冊答案