(本題滿分12分)如圖所示,在棱長為4的正方體ABCD—A1B1C1D1中,點E是棱CC1的中點。

 

(I)求三棱錐D1—ACE的體積;

(II)求異面直線D1E與AC所成角的余弦值;

(III)求二面角A—D1E—C的正弦值。

 

【答案】

(I);(II)(III)

【解析】

試題分析:(I)  …………3分

(II)取DD1的中點F,連結(jié)FC,則D1E//FC,

∴∠FCA即為異面直線D1E與AC

所成角或其補(bǔ)角。 …………5分

∴異面直線D1E與AC所成角的余弦值為…………7分

(III)過點D作DG⊥D1E于點G,連接AG,由AD⊥面D1DCC1,

∴AD⊥D1E

又∵DG⊥D1E,∴D1E⊥面ADG

∴D1E⊥AG,則∠AGD為二面角A—D1E—C的平面角  ……9分

∵D1E·DG=DD1·CD,

 

二面角A—D1E—C的正弦值為…………12分

法二:(I)同法一   ………………3分

(II)以D為原點,分別以DA,DC,DD1為ox,oy,oz軸建立空間直角坐標(biāo)系。

(III)顯然是平面D1DCE的法向量,

設(shè)平面D1AE的一個法向量為

二面角A—D1E—C的正弦值為…………12分

考點:棱錐的體積公式;異面直線所成的角;二面角。

點評:求異面直線所成的角,解題的關(guān)鍵是:首先正確的建立空間直角坐標(biāo)系,然后可將異面直線所成的角轉(zhuǎn)化為所對應(yīng)的向量的夾角或其補(bǔ)角;而對于利用向量法求線面角關(guān)鍵是正確求解平面的一個法向量。注意計算要仔細(xì)、認(rèn)真。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014屆江西高安中學(xué)高二上期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分)

如圖所示的幾何體是由以正三角形為底面的直棱柱被平面所截而得. ,的中點.

(1)當(dāng)時,求平面與平面的夾角的余弦值;

(2)當(dāng)為何值時,在棱上存在點,使平面

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖北省八市高三3月聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分)如圖,在長方體中,已知上下兩底面為正方形,且邊長均為1;側(cè)棱,為中點,中點,上一個動點.

(Ⅰ)確定點的位置,使得

(Ⅱ)當(dāng)時,求二面角的平

面角余弦值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣西桂林中學(xué)高三7月月考試題理科數(shù)學(xué) 題型:解答題

(本題滿分12分)如圖,在四棱錐P—ABCD中,底面ABCD為正方形,PD⊥平面ABCD,且PD=AB=2,E是PB的中點,F(xiàn)是AD的中點.

 ⑴求異面直線PD與AE所成角的大;

 ⑵求證:EF⊥平面PBC ;

 ⑶求二面角F—PC—B的大。.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年湖南省招生統(tǒng)一考試文科數(shù)學(xué) 題型:解答題

 

(本題滿分12分)

如圖3,在圓錐中,已知的直徑的中點.

(I)證明:

(II)求直線和平面所成角的正弦值.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年海南省高三五校聯(lián)考數(shù)學(xué)(文) 題型:解答題

(本題滿分12分)

如圖,三棱錐S—ABC中,AB⊥BC,D、E分別為AC、BC的中點,SA=SB=SC。

   (1)求證:BC⊥平面SDE;

   (2)若AB=BC=2,SB=4,求三棱錐S—ABC的體積。

 

查看答案和解析>>

同步練習(xí)冊答案