A. | a2+b2≤1 | B. | a2+b2≥1 | C. | $\frac{1}{{a}^{2}}$+$\frac{1}{^{2}}$≤1 | D. | $\frac{1}{{a}^{2}}$+$\frac{1}{^{2}}$≥1 |
分析 由題意可得(bcosα+asinα)2=a2b2,再利用 (bcosα+asinα)2≤(a2+b2)•(cos2α+sin2α),化簡可得答案.
解答 解:若直線$\frac{x}{a}$+$\frac{y}$=1通過點M(cosα,sinα),則$\frac{cosα}{a}$+$\frac{sinα}$,
∴bcosα+asinα=ab,∴(bcosα+asinα)2=a2b2.
∵(bcosα+asinα)2≤(a2+b2)•(cos2α+sin2α)=(a2+b2),
∴a2b2≤(a2+b2),∴$\frac{1}{{a}^{2}}+\frac{1}{^{2}}$≥1,
故選D.
點評 本題考查恒過定點的直線,不等式性質(zhì)的應(yīng)用,利用 (bcosα+asinα)2≤(a2+b2)•(cos2α+sin2α),是解題的難點.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 銳角三角形 | B. | 直角三角形 | C. | 鈍角三角形 | D. | 等腰三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com