A. | $\frac{{{2^n}+1}}{{{2^{n-1}}}}$ | B. | $\frac{{{2^n}-1}}{{{2^{n-1}}}}$ | C. | $\frac{{{2^n}+1}}{{{2^{n+1}}}}$ | D. | $\frac{{{2^n}-1}}{{{2^{n+1}}}}$ |
分析 a1=3,${a_n}=\frac{1}{2}{a_{n-1}}+1(n≥2,n∈{N^*})$,變形為:an-2=$\frac{1}{2}$(an-1-2),利用等比數(shù)列的通項公式即可得出.
解答 解:∵a1=3,${a_n}=\frac{1}{2}{a_{n-1}}+1(n≥2,n∈{N^*})$,
變形為:an-2=$\frac{1}{2}$(an-1-2),
∴數(shù)列{an-2}是等比數(shù)列,首項為1,公比為$\frac{1}{2}$.
∴an-2=$(\frac{1}{2})^{n-1}$.
∴數(shù)列{an}的通項公式是an=2+$(\frac{1}{2})^{n-1}$=$\frac{{2}^{n}+1}{{2}^{n-1}}$.
故選:A.
點評 本題考查了數(shù)列遞推關系、等比數(shù)列的定義通項公式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 12 | B. | $3\sqrt{2}$ | C. | $\frac{{4\sqrt{2}}}{3}$ | D. | $2\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {x|x<-2或x>4} | B. | {x|x<-2或x>2} | C. | {x|x<0或x>4} | D. | {x|x<0或x>6} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=x-1 | B. | y-1=$\frac{\sqrt{2}}{2}$(x+2) | C. | $\frac{x}{5}$+$\frac{y}{5}$=1 | D. | $\sqrt{2}$x+2y=0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | c<b<a | B. | b<a<c | C. | c<a<b | D. | a<b<c |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [0,1) | B. | (0,2] | C. | (1,2) | D. | [1,2] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | π | B. | 12π | C. | 16π | D. | 32π |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com