5.(1)求證:$\sqrt{3}+\sqrt{7}<2\sqrt{5}$.
(2)在數(shù)列{an}中,${a_1}=1,{\;}_{\;}{a_{n+1}}=\frac{{2{a_n}}}{{2+{a_n}}}{\;}_{\;}(n∈{N^+})$,試猜想這個(gè)數(shù)列的通項(xiàng)公式.

分析 (1)平方作差即可得出.
(2)在數(shù)列{an}中,由${a_1}=1,{\;}_{\;}{a_{n+1}}=\frac{{2{a_n}}}{{2+{a_n}}}{\;}_{\;}(n∈{N^+})$,可得a1=1=$\frac{2}{2}$,a2=$\frac{2{a}_{1}}{2+{a}_{1}}$=$\frac{2}{2+1}$,a3=$\frac{2}{3+1}$,a4=$\frac{2}{4+1}$,a5=$\frac{2}{5+1}$,…,即可猜想出結(jié)論.

解答 解:(1)∵$(\sqrt{3}+\sqrt{7})^{2}$-$(2\sqrt{5})^{2}$=10+2$\sqrt{21}$-20=2$\sqrt{21}$-10=$\sqrt{84}$-$\sqrt{100}$<0,
∴$(\sqrt{3}+\sqrt{7})^{2}$<$(2\sqrt{5})^{2}$,
∴$\sqrt{3}+\sqrt{7}<2\sqrt{5}$.
(2)在數(shù)列{an}中,∵${a_1}=1,{\;}_{\;}{a_{n+1}}=\frac{{2{a_n}}}{{2+{a_n}}}{\;}_{\;}(n∈{N^+})$,
∴a1=1=$\frac{2}{2}$,a2=$\frac{2{a}_{1}}{2+{a}_{1}}$=$\frac{2}{2+1}$,a3=$\frac{2{a}_{2}}{2+{a}_{2}}$=$\frac{2×\frac{2}{3}}{2+\frac{2}{3}}$=$\frac{2}{3+1}$,同理可得:a4=$\frac{2}{4+1}$,a5=$\frac{2}{5+1}$,….
∴可以猜想,這個(gè)數(shù)列的通項(xiàng)公式是an=$\frac{2}{n+1}$.

點(diǎn)評(píng) 本題考查了數(shù)列遞推關(guān)系、數(shù)列通項(xiàng)公式,考查了猜想歸納能力、推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知實(shí)數(shù)x,y滿足:$\left\{\begin{array}{l}x≥1\\ x+y≤3\\ x-2y-3≤0\end{array}\right.$,則z=2x+y的最小值( 。
A.2B.1C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖,棱長為1的正方體ABCD-A1B1C1D1中,P為線段A1B上的動(dòng)點(diǎn),則下列結(jié)論錯(cuò)誤的是( 。
A.DC1⊥D1P
B.若直線l是平面ABCD內(nèi)的直線,直線m是平面DD1C1C內(nèi)的直線,若l與m相交,則交點(diǎn)一定在直線CD上
C.若P為A1B上動(dòng)點(diǎn),則AP+PD1的最小值為$\frac{\sqrt{2}+\sqrt{6}}{2}$
D.∠PAD1最小為$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知向量$\overrightarrow{a}$=(x-1,2),$\overrightarrow$=(4,y),若$\overrightarrow{a}$⊥$\overrightarrow$,則點(diǎn)P(x,y)到原點(diǎn)的距離的最小值為$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左、右焦點(diǎn)為F1,F(xiàn)2,M為短軸端點(diǎn),且S△MF1F2=4,離心率為$\frac{{\sqrt{2}}}{2}$,O為坐標(biāo)原點(diǎn).
(1)求橢圓C的方程;
(2)過點(diǎn)O作兩條射線,與橢圓C分別交于A,B兩點(diǎn),且滿足$|{\overrightarrow{OA}+\overrightarrow{OB}}|=|{\overrightarrow{OA}-\overrightarrow{OB}}|$,證明點(diǎn)O到直線AB的距離為定值,并求弦AB長度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=alnx-ax-3(a∈R),求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.求函數(shù)y=(x-2)(x-3)(x-4)在x=1處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.函數(shù)f(x)=1-2acosx-2sin2x的最小值為g(a)(a∈R).
(1)當(dāng)a=2時(shí),求函數(shù)f(x)的值域;
(2)當(dāng)a=2時(shí),x∈[0,$\frac{π}{2}$],函數(shù)f(x)≤m恒成立,求m的取值范圍;
(3)求g(a).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若函數(shù)f(x)=$\frac{1}{3}$(a-1)x3+$\frac{1}{2}$ax2-$\frac{1}{4}$x+$\frac{1}{5}$在其定義域內(nèi)有極值點(diǎn),則a的取值為(-∞,$\frac{-1-\sqrt{5}}{2}$)∪( $\frac{-1+\sqrt{5}}{2}$,+∞).

查看答案和解析>>

同步練習(xí)冊(cè)答案