15.若函數(shù)f(x)=$\frac{1}{3}$(a-1)x3+$\frac{1}{2}$ax2-$\frac{1}{4}$x+$\frac{1}{5}$在其定義域內(nèi)有極值點,則a的取值為(-∞,$\frac{-1-\sqrt{5}}{2}$)∪( $\frac{-1+\sqrt{5}}{2}$,+∞).

分析 函數(shù)f(x)=$\frac{1}{3}$(a-1)x3+$\frac{1}{2}$ax2-$\frac{1}{4}$x+$\frac{1}{5}$有極值,等價于f′(x)=0有兩個不相等的實數(shù)根,由此能求出a的取值范圍.

解答 解:∵函數(shù)f(x)=$\frac{1}{3}$(a-1)x3+$\frac{1}{2}$ax2-$\frac{1}{4}$x+$\frac{1}{5}$,
∴f′(x)=(a-1)x2+ax-$\frac{1}{4}$,
∵函數(shù)f(x)在其定義域內(nèi)有極值點,
當(dāng)a≠1時,f′(x)=(a-1)x2+ax-$\frac{1}{4}$=0有兩個不相等的實數(shù)根,
∴△=a2-4×(a-1)×(-$\frac{1}{4}$)>0并且a-1≠0,
解得a>1或1>a>$\frac{-1+\sqrt{5}}{2}$或a<$\frac{-1-\sqrt{5}}{2}$,
當(dāng)a=1時,函數(shù)f(x)=$\frac{1}{2}$x2-$\frac{1}{4}$x+$\frac{1}{5}$是二次函數(shù),滿足題意.
∴a的取值范圍為(-∞,$\frac{-1-\sqrt{5}}{2}$)∪( $\frac{-1+\sqrt{5}}{2}$,+∞).
故答案為:(-∞,$\frac{-1-\sqrt{5}}{2}$)∪( $\frac{-1+\sqrt{5}}{2}$,+∞).

點評 本題考查函數(shù)的極大值和極小值的求法,考查實數(shù)的取值范圍的求法,是中檔題,解題時要認(rèn)真審題,注意導(dǎo)數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.(1)求證:$\sqrt{3}+\sqrt{7}<2\sqrt{5}$.
(2)在數(shù)列{an}中,${a_1}=1,{\;}_{\;}{a_{n+1}}=\frac{{2{a_n}}}{{2+{a_n}}}{\;}_{\;}(n∈{N^+})$,試猜想這個數(shù)列的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在極坐標(biāo)系中,點M(3,$\frac{π}{3}$)和點N(3,$\frac{2}{3}$π)的位置關(guān)系是(  )
A.關(guān)于極軸所在直線對稱B.重合
C.關(guān)于直線$θ=\frac{π}{2}(ρ∈R)$對稱D.關(guān)于極點對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.A、B、C是平面上不共線的三點,O為△ABC的中心,D是AB的中點,動點P滿足$\overrightarrow{OP}$=$\frac{1}{3}$[(2-2λ)$\overrightarrow{OD}$+(1+2λ)$\overrightarrow{OC}$](λ∈R),則點P的軌跡一定過△ABC的( 。
A.內(nèi)心B.外心C.垂心D.重心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知A(2,3),B(1,4),且$\frac{1}{2}$$\overrightarrow{AB}$=(sinx,cosy),x,y∈(-$\frac{π}{2}$,$\frac{π}{2}$),則x+y=$\frac{π}{6}$或-$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知拋物線C1:y2=4x的焦點為F,點P為拋物線上一點,且|PF|=3,雙曲線C2:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的漸近線恰好過P點,則雙曲線C2的離心率為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知復(fù)數(shù)z=m2-1+(m+1)i(其中m∈R,i是虛數(shù)單位)是純虛數(shù),則復(fù)數(shù)m+i的共軛復(fù)數(shù)是( 。
A.1+iB.1-iC.-1-iD.-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)f(x)滿足f(1)=2,f(x+1)=$\frac{1+f(x)}{1-f(x)}$,則f(1)•f(2)•f(3)…f(23)的值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在邊長為1的正三角形ABC中,$\overrightarrow{BC}$=2$\overrightarrow{BD}$,則$\overrightarrow{AD}$•$\overrightarrow{AB}$=( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{4}$C.$\frac{3}{4}$D.1

查看答案和解析>>

同步練習(xí)冊答案