下列函數(shù)既是定義域上的減函數(shù)又是奇函數(shù)的是( 。
A、f(x)=|x|
B、f(x)=
1
x
C、f(x)=-x3
D、f(x)=x|x|
考點(diǎn):函數(shù)單調(diào)性的判斷與證明,函數(shù)奇偶性的判斷
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)的單調(diào)性與奇偶性對選項(xiàng)中的函數(shù)進(jìn)行判斷即可.
解答: 解:對于A,f(x)=|x|,是定義域R上的偶函數(shù),∴不滿足條件;
對于B,f(x)=
1
x
,在定義域(-∞,0)∪(0,+∞)上是奇函數(shù),且在每一個區(qū)間上是減函數(shù),∴不滿足條件;
對于C,f(x)=-x3,在定義域R上是奇函數(shù),且是減函數(shù),∴滿足題意;
對于D,f(x)=x|x|=
x2,x≥0
-x2,x<0
,在定義域R上是奇函數(shù),且是增函數(shù),∴不滿足條件.
故選:C.
點(diǎn)評:本題考查了常見的基本初等函數(shù)的單調(diào)性與奇偶性的判斷問題,是基礎(chǔ)題目.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為
x=2+2cosθ
y=2sinθ
(θ為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,直線l的方程為ρsin(θ+
π
4
)=0
.則曲線C在極坐標(biāo)系中的方程是
 
;直線l被曲線C截得的弦長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
-
x
,x≥0
x2-1,x<0
,則f(f(2))=( 。
A、-1B、-3C、1D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x||x-2|<3},B={x|x2-2x+2m<0}.
(1)若實(shí)數(shù)m=-4,求A∩B;
(2)若A∪B=A,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列三個結(jié)論:
①當(dāng)a為任意實(shí)數(shù)時,直線(a+1)x-y+2a+1=0恒過下點(diǎn)P,則P在圓x2+y2=5上;
②拋物線y=4x2的焦點(diǎn)坐標(biāo)是(0,1);
③雙曲線x2-
y2
3
=1的離心率e=2.
其中所有的正確的結(jié)論是( 。
A、①②B、②③C、①③D、①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
9
+
y2
4
=1和直線l:x-y-4=0,點(diǎn)P在直線l上,過點(diǎn)P作橢圓C的兩切線PA、PB,A、B為切點(diǎn),求證:當(dāng)點(diǎn)P在直線l上運(yùn)動時,直線AB恒過一定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

A點(diǎn)到平面α的距離為3,B點(diǎn)到平面α的距離為5,則AB中點(diǎn)M到平面α的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(文科) 已知點(diǎn)P,Q是△ABC所在平面上的兩個定點(diǎn),且滿足
PA
+
PC
=
0
,2
QA
+
QB
+
QC
=
BC
,若|
PQ
|=λ|
BC
|
,則正實(shí)數(shù)λ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
3
sinπx,x≤0
f(x-1)+1,x>0
,則f(
2
3
)的值為( 。
A、
1
2
B、-
1
2
C、1
D、-1

查看答案和解析>>

同步練習(xí)冊答案