11.圖中,小方格是邊長(zhǎng)為1的正方形,圖中粗線畫(huà)出的是某幾何體的三視圖,且該幾何體的頂點(diǎn)都在同一球面上,則該幾何體的外接球的表面積為( 。
A.32πB.48πC.50πD.64π

分析 通過(guò)還原三視圖確定幾何體,利用空間中的位置關(guān)系計(jì)算可得球的半徑,進(jìn)而利用面積公式即得結(jié)論.

解答 解:由三視圖可知該幾何體是一個(gè)底面是矩形的四棱錐,
記該幾何體的外接球球心為O,半徑R=OA,
則PA=$\frac{1}{2}$×$\sqrt{{4}^{2}+{4}^{2}+{4}^{2}}$=$2\sqrt{3}$,OP=R-$2\sqrt{3}$,
所以O(shè)A2=OP2+AP2,
又因?yàn)镺P2=$(R-\frac{1}{2}×\sqrt{{4}^{2}+{4}^{2}})^{2}$=$(R-2\sqrt{2})^{2}$,
所以R2=$(R-2\sqrt{2})^{2}$+$(2\sqrt{3})^{2}$,解得:R=$\frac{5}{\sqrt{2}}$,
所以所求面積S=4π×R2=4π×$(\frac{5}{\sqrt{2}})^{2}$=50π,
故選:C.

點(diǎn)評(píng) 本題考查三視圖求面積,考查空間想象能力,找出球心是解決本題的關(guān)鍵,注意解題方法的積累,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若{an}是等差數(shù)列,且a1=-1,公差為-3,則a8等于( 。
A.-7B.-8C.-22D.27

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知兩個(gè)向量$\overrightarrow{a}$,$\overrightarrow$對(duì)應(yīng)的復(fù)數(shù)是 z1=3和z2=5+5i,求向量$\overrightarrow{a}$與$\overrightarrow$的夾角$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.有三支股票A,B,C,28位股民的持有情況如下:每位股民至少持有其中一支股票.在不持有A股票的人中,持有B股票的人數(shù)是持有C股票的人數(shù)的2倍.在持有A股票的人中,只持有A股票的人數(shù)比除了持有A股票外,同時(shí)還持有其它股票的人數(shù)多1.在只持有一支股票的人中,有一半持有A股票.則只持有B股票的股民人數(shù)是( 。
A.7B.6C.5D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.如圖.在△ABC中,D是BC的中點(diǎn),E、F是AD上的兩個(gè)三等分點(diǎn),$\overrightarrow{BA}$•$\overrightarrow{CA}$=4,$\overrightarrow{BF}$•$\overrightarrow{CF}$=-1,則$\overrightarrow{BE}$•$\overrightarrow{CE}$的值是( 。
A.4B.8C.$\frac{7}{8}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.如圖,網(wǎng)格紙上的小正方形邊長(zhǎng)為1,粗線畫(huà)出的是某幾何體的三視圖,則該幾何體外接球的體積為$8\sqrt{6}π$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$過(guò)點(diǎn)$P({\sqrt{2},1})$,左右焦點(diǎn)分別為F1,F(xiàn)2,且線段PF1與y軸的交點(diǎn)Q恰好為線段PF1的中點(diǎn),O為坐標(biāo)原點(diǎn).
(1)求橢圓C的離心率;
(2)與直線PF1的斜率相同的直線l與橢圓C相交于A,B兩點(diǎn),求當(dāng)△AOB的面積最大時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.甲、乙兩名技工在相同的條件下生產(chǎn)某種零件,連續(xù)6天中,他們?nèi)占庸さ暮细窳慵䲠?shù)的統(tǒng)計(jì)數(shù)據(jù)的莖葉圖,如圖所示.
(1)寫(xiě)出甲、乙的中位數(shù)和眾數(shù);
(2)計(jì)算甲、乙的平均數(shù)與方差,并依此說(shuō)明甲、乙兩名技工哪名更為優(yōu)秀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知i是虛數(shù)單位,復(fù)數(shù)z滿足z=i(i-1),則z的虛部是( 。
A.1B.-1C.iD.-i

查看答案和解析>>

同步練習(xí)冊(cè)答案