【題目】已知正三棱錐P﹣ABC,點P,A,B,C都在半徑為的球面上,若PA,PB,PC兩兩互相垂直,則球心到截面ABC的距離為( )
A.B.C.D.
【答案】A
【解析】
先利用正三棱錐的特點,將球的內(nèi)接三棱錐問題轉(zhuǎn)化為球的內(nèi)接正方體問題,從而將所求距離轉(zhuǎn)化為正方體中,中心到截面的距離問題,利用等體積法可實現(xiàn)此計算
∵正三棱錐P﹣ABC,PA,PB,PC兩兩垂直,
∴此正三棱錐的外接球即以PA,PB,PC為三邊的正方體的外接圓O,
∵圓O的半徑為,
∴正方體的邊長為2,即PA=PB=PC=2
球心到截面ABC的距離即正方體中心到截面ABC的距離
設(shè)P到截面ABC的距離為h,則正三棱錐P﹣ABC的體積VS△ABC×hS△PAB×PC2×2×2
△ABC為邊長為2的正三角形,S△ABC(2)2
∴h
∴球心(即正方體中心)O到截面ABC的距離為
故選:A.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(Ⅰ)若在內(nèi)單調(diào)遞減,求實數(shù)的取值范圍;
(Ⅱ)若函數(shù)有兩個極值點分別為,,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面角坐標(biāo)系中,以坐標(biāo)原點為極點, 軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,將曲線向左平移個單位長度得到曲線.
(1)求曲線的參數(shù)方程;
(2)已知為曲線上的動點, 兩點的極坐標(biāo)分別為,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】部分與整體以某種相似的方式呈現(xiàn)稱為分形,一個數(shù)學(xué)意義上分形的生成是基于一個不斷迭代的方程式,即一種基于遞歸的反饋系統(tǒng).分形幾何學(xué)不僅讓人們感悟到科學(xué)與藝木的融合,數(shù)學(xué)與藝術(shù)審美的統(tǒng)一,而且還有其深刻的科學(xué)方法論意義.如圖,由波蘭數(shù)學(xué)家謝爾賓斯基1915年提出的謝爾賓斯基三角形就屬于-種分形,具體作法是取一個實心三角形,沿三角形的三邊中點連線,將它分成4個小三角形,去掉中間的那一個小三角形后,對其余3個小三角形重復(fù)上述過程逐次得到各個圖形.
若在圖④中隨機(jī)選取-點,則此點取自陰影部分的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)在“精準(zhǔn)扶貧”行動中,決定幫助一貧困山區(qū)將水果運(yùn)出銷售.現(xiàn)有8輛甲型車和4輛乙型車,甲型車每次最多能運(yùn)6噸且每天能運(yùn)4次,乙型車每次最多能運(yùn)10噸且每天能運(yùn)3次,甲型車每天費(fèi)用320元,乙型車每天費(fèi)用504元.若需要一天內(nèi)把180噸水果運(yùn)輸?shù)交疖囌,則通過合理調(diào)配車輛,運(yùn)送這批水果的費(fèi)用最少為( )
A.2400元B.2560元C.2816元D.4576元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】劉徽《九章算術(shù)商功》中將底面為長方形,兩個三角面與底面垂直的四棱錐體叫做陽馬.如圖,是一個陽馬的三視圖,則其外接球的體積為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,△為一個等腰三角形形狀的空地,腰的長為(百米),底的長為(百米),現(xiàn)決定在空地內(nèi)筑一條筆直的小路(寬度不計),將該空地分成一個四邊形和一個三角形,設(shè)分成的四邊形和三角形的周長相等.
(1)若小路一端為的中點,求此時小路的長度;
(2)求分成的四邊形的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)討論的單調(diào)性,并證明有且僅有兩個零點;
(Ⅱ)設(shè)是的一個零點,證明曲線在點處的切線也是曲線的切線.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com