精英家教網 > 高中數學 > 題目詳情
過點P(-3,0)且傾斜角為30°的直線和曲線
x=t+
1
t
y=t-
1
t
(t為參數)相交于A、B兩點.則線段AB的長為
 
考點:雙曲線的參數方程,直線與圓錐曲線的關系
專題:計算題,坐標系和參數方程
分析:寫出直線的參數方程,代入曲線方程得到關于s 的一元二次方程,利用根與系數的關系,代入弦長公式求得AB的長.
解答: 解:直線的參數方程為
x=-3+
3
2
s
y=
1
2
s
 (s 為參數),
曲線
x=t+
1
t
y=t-
1
t
(t為參數)可以化為x2-y2=4.
將直線的參數方程代入上式,得s2-6
3
s+10=0.
設A、B對應的參數分別為 s1,s2,
∴s1+s2=6
3
,s1•s2=10.
∴AB=|s1-s2|=
(s1+s2)2-4s1s2
=2
17

故答案為:2
17
點評:本題考查直線的參數方程,一元二次方程根與系數的關系,弦長公式的應用,利用AB=|s1-s2|=
(s1+s2)2-4s1s2
是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

數列{an}的前n項和為Sn,首項為a1,且Sn=an2-an+1(n∈N+),若實數x,y滿足
x-y+1≥0
x+y≥0
x≤a1
則z=x+2y的最大值是               (  )
A、-1
B、
1
2
C、5
D、1

查看答案和解析>>

科目:高中數學 來源: 題型:

兩個人射擊,甲射擊一次中靶概率是p1,乙射擊一次中靶概率是p2,已知,p1,p2是方程 3x2-x=0的根,若兩人各射擊5次,甲的方差是
5
4

(Ⅰ)求 p1,p2的值;
(Ⅱ)兩人各射擊2次,中靶至少3次就算完成目的,則完成目的概率是多少?
(Ⅲ)甲、乙兩人輪流射擊,各射擊3次,中靶一次就終止射擊,求終止射擊時兩人射擊的次數之和ξ的期望?

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左右焦點分別是F1和F2,離心率e=
2
2
,且a2=2c.
(1)求橢圓的標準方程;
(2)過點F1的直線l與該橢圓相交于M、N兩點,且|
F2M
+
F2N
|=
2
26
3
,求直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

四棱錐P-ABCD中,底面ABCD為矩形,PA⊥底面ABCD,PA=AB=
2
,AD=1,點E是棱PB的中點.
(1)證明:PD∥平面EAC;
(2)證明:平面ADE⊥平面PBC.
(3)求二面角B-EC-D的平面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

“sinθ•cosθ>0”是“θ是第一象限角”的(  )
A、充分必要條件
B、充分非必要條件
C、必要非充分條件
D、非充分非必要條件

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)=x2-px+q,其中p>0,q>0.
(1)當p>q時,證明
f(q)
p
f(p)
q
;
(2)若f(x)=0在區(qū)間,(0,1],(1,2]內各有一個根,求p+q的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=[x2+(1-t)x+1]e-x(t∈R,e是自然對數的底).
(Ⅰ)若對于任意x∈(0,1),曲線y=f(x)恒在直線y=x上方,求實數t的最大值;
(Ⅱ)是否存在實數a,b,c∈[0,1],使得f(a)+f(b)<f(c)?若存在,求出t的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=log2
1+x
1-x

(1)判斷函數f(x)的奇偶性,并加以證明;
(2)求使f(x)>0時的x取值范圍.

查看答案和解析>>

同步練習冊答案