A. | (0,3) | B. | (1,3] | C. | (1,3) | D. | [3,+∞) |
分析 由已知中f(x)=loga(6-ax)在(-3,2)上為減函數(shù),結合底數(shù)的范圍,可得內函數(shù)為減函數(shù),則外函數(shù)必為增函數(shù),再由真數(shù)必為正,可得a的取值范圍.
解答 解:若函數(shù)f(x)=loga(6-ax)在(-3,2)上為減函數(shù),
則$\left\{\begin{array}{l}{a>1}\\{6-2a≥0}\end{array}\right.$
解得:a∈(1,3]
故選B.
點評 本題考查的知識點是復合函數(shù)的單調性,其中根據(jù)已知分析出內函數(shù)為減函數(shù),則外函數(shù)必為增函數(shù),是解答的關鍵
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | b=7,c=3,C=30° | B. | a=20,b=30,C=30° | C. | b=4,c=2$\sqrt{3}$,C=60° | D. | b=5,c=4,C=45° |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | x-2y+6=0 | B. | x-2y-6=0 | C. | x+2y-10=0 | D. | x+2y-8=0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com