10.已知$x∈R,a={x^2}+\frac{1}{2},b=2-x,c={x^2}-x+1$,試用反證法證明:a,b,c中至少有一個(gè)不小于1.

分析 假設(shè)a,b,c均小于1,即a<1,b<1,c<1則有a+b+c<3,再結(jié)合配方法,引出矛盾,即可得出結(jié)論.

解答 證明:假設(shè)a,b,c均小于1,即a<1,b<1,c<1則有a+b+c<3,
而$a+b+c=2{x^2}-2x+\frac{7}{2}=2{(x-\frac{1}{2})^2}+3≥3$矛盾,所以原命題成立.

點(diǎn)評(píng) 用反證法證明數(shù)學(xué)命題的方法和步驟,把要證的結(jié)論進(jìn)行否定,得到要證的結(jié)論的反面,是解題的突破口,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(3,-1),點(diǎn)P(x,y)的坐標(biāo)滿(mǎn)足不等式組$\left\{\begin{array}{l}y≤2\\ x+y≥1\\ x-y≤a\end{array}\right.$,若$z=\overrightarrow{OP}•\overrightarrow{OA}$的最大值為7,則實(shí)數(shù)a的值為( 。
A.-7B.-1C.1D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知函數(shù)f(x)=loga(6-ax)在(-3,2)上是減函數(shù),則a的取值范圍是( 。
A.(0,3)B.(1,3]C.(1,3)D.[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知橢圓C1和拋物線C2的焦點(diǎn)均在x軸上,從兩條曲線上各取兩個(gè)點(diǎn),將其坐標(biāo)混合記錄于表中:
x$-\sqrt{2}$2$\sqrt{6}$9
y$\sqrt{3}$$-\sqrt{2}$-13
(1)求橢圓C1和拋物線C2的標(biāo)準(zhǔn)方程;
(2)過(guò)橢圓C1右焦點(diǎn)F的直線l與此橢圓相交于A,B兩點(diǎn),點(diǎn)P(4,0),設(shè)$\overrightarrow{FA}=λ\overrightarrow{FB},λ∈[{-2,-1}]$,求$|{\overrightarrow{PA}+\overrightarrow{PB}}|$取最大值時(shí),直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知圓(x+a)2+y2=4截直線x-y-4=0所得的弦的長(zhǎng)度為$2\sqrt{2}$,則a等于( 。
A.$±2\sqrt{2}$B.6C.2或6D.-2或-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.在平面直角坐標(biāo)系xOy中,已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左,右焦點(diǎn)分別為F1(-3,0),F(xiàn)2(3,0).點(diǎn)P(x0,y0)是橢圓C在x軸上方的動(dòng)點(diǎn),且△PF1F2的周長(zhǎng)為16.
(I)求橢圓C的方程;
(II)設(shè)點(diǎn)Q到△PF1F2三邊的距離均相等.當(dāng)x0=3時(shí),求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.曲線的參數(shù)方程為$\left\{\begin{array}{l}x=1+2cosθ\\ y=2+3sinθ\end{array}\right.(θ為參數(shù))$,則該曲線的普通方程為(  )
A.$\frac{{{{(x+1)}^2}}}{4}-\frac{{{{(y+2)}^2}}}{9}=1$B.$\frac{{{{(x-1)}^2}}}{4}-\frac{{{{(y-2)}^2}}}{9}=1$C.$\frac{{{{(x+1)}^2}}}{4}+\frac{{{{(y+2)}^2}}}{9}=1$D.$\frac{{{{(x-1)}^2}}}{4}+\frac{{{{(y-2)}^2}}}{9}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.PM2.5是指大氣中直徑小于或等于2.5微米的顆粒物,也稱(chēng)為可入肺顆粒物,它是形成霧霾天氣的主要原因之一.PM2.5日均值越小,空氣質(zhì)量越好.2012年2月29日,國(guó)家環(huán)保部發(fā)布的《環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)》見(jiàn)表:
針對(duì)日趨嚴(yán)重的霧霾情況各地環(huán)保部門(mén)做了積極的治理.馬鞍山市環(huán)保局從市區(qū)2015年11月~12月和2016年11月~12月的PM2.5檢測(cè)數(shù)據(jù)中各隨機(jī)抽取15天的數(shù)據(jù)來(lái)分析治理效果.樣本數(shù)據(jù)如莖葉圖所示(十位為莖,個(gè)位為葉)
PM2.5日均值k(微克)空氣質(zhì)量等級(jí)
k≤35一級(jí)
35<k<75二級(jí)
k>75超標(biāo)
(Ⅰ)分別求這兩年樣本數(shù)據(jù)的中位數(shù)和平均值,并以此推斷2016年11月~12月的空氣質(zhì)量是否比2015年同期有所提高?
(Ⅱ)在2016年的樣本數(shù)據(jù)中隨機(jī)抽取3天,以X表示抽到空氣質(zhì)量為一級(jí)的天數(shù),求X的分布列與期望.
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.在矩形ABCD中,AD=1,AB=$\sqrt{3}$,將△ABD折起到△PBD的位置,使得面PBD⊥面BCD,若P、B、C、D四點(diǎn)在同一球面上,則球的體積為$\frac{4π}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案