12.已知向量$\overrightarrow a=(-2,3,-5)$與向量$\overrightarrow b=(4,1,z)$垂直,則z的值是( 。
A.2B.1C.-1D.-2

分析 利用向量垂直的性質(zhì)直接求解.

解答 解:∵向量$\overrightarrow a=(-2,3,-5)$與向量$\overrightarrow b=(4,1,z)$垂直,
∴$\overrightarrow{a}•\overrightarrow$=-2×4+3×1+(-5)×z=0,
解得z=-1.
故選:C.

點(diǎn)評 本題考查實(shí)數(shù)值的求法,考查向量垂直等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知數(shù)列{an}前n項(xiàng)和為Sn
(1)若Sn=2n-1,求數(shù)列{an}的通項(xiàng)公式;
(2)若a1=$\frac{1}{2}$,Sn=anan+1,an≠0,求數(shù)列{an}的通項(xiàng)公式;
(3)設(shè)無窮數(shù)列{an}是各項(xiàng)都為正數(shù)的等差數(shù)列,是否存在無窮等比數(shù)列{bn},使得an+1=anbn恒成立?若存在,求出所有滿足條件的數(shù)列{bn}的通項(xiàng)公式;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.以直角坐標(biāo)系xOy的坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t+4\sqrt{2}}\end{array}\right.$(t為參數(shù)),圓C的極坐標(biāo)方程為ρ=2cos(θ+$\frac{π}{4}$).
(1)求圓C的直角坐標(biāo);
(2)試判斷直線l與圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知f(x)=cosx,$則f'(\frac{π}{2})$=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知圓C的參數(shù)方程為$\left\{\begin{array}{l}{x=1+2cosθ}\\{y=\sqrt{3}+2sinθ}\end{array}\right.$(θ為參數(shù)),若P是圓C與x軸的交點(diǎn),以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,設(shè)過點(diǎn)P的圓C的切線為l
(Ⅰ)求直線l的極坐標(biāo)方程
(Ⅱ)求圓C上到直線ρ(cosθ+$\sqrt{3}$sinθ)+6=0的距離最大的點(diǎn)的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=xlnx+2,g(x)=x2-mx.
(1)求f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)求函數(shù)f(x)在[t,t+2](t>0)上的最小值;
(3)若存在${x_0}∈[{\frac{1}{e},e}]$使得mf'(x)+g(x)≥2x+m成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在△ABC中,a,b,c分別是角A,B,C的對邊,且a=3,c=1,$B=\frac{π}{3}$,則b的值為$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.?dāng)?shù)列{an}的各項(xiàng)均為正數(shù),a1=1,對任意n∈N*,an+12-1=4an(an+1),數(shù)列{bn}滿足b1=$\frac{1}{2}$,bn+1=$\frac{n+1}{2n}{b_n}$.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)記Tn為數(shù)列{bn}的前n項(xiàng)和,Sn為數(shù)列{log2(an+1)}的前n項(xiàng)和.f(n)=$\frac{{2{S_n}(2-{T_n})}}{n+2}$,試問f(n)是否存在最大值?若存在,求出最大值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,正三棱柱A′B′C′-ABC中,D為AA′中點(diǎn),E為BC′上的一點(diǎn),AB=a,CC′=h
(1)若DE⊥平面BCC′B′,求證:BE=EC′
(2)平面BC′D將棱柱A′B′C′-ABC分割為兩個(gè)幾何體,記上面一個(gè)幾何體的體積為V1,下面一個(gè)幾何體的體積為V2,求V1,V2

查看答案和解析>>

同步練習(xí)冊答案