10.一個(gè)幾何體的三視圖如圖所示(其中正視圖的弧線為四分之一圓周),則該幾何體的表面積為( 。
A.72+6πB.72+4πC.48+6πD.48+4π

分析 由已知中的三視圖,可得該幾何體是一個(gè)以正視圖為為底面的柱體,由柱體表面積公式,可得答案.

解答 解:由已知中的三視圖,可得該幾何體是一個(gè)以正視圖為為底面的柱體,
(也可以看成一個(gè)凹六棱柱與四分之一圓柱的組合體),
其底面面積為:4×4-2×2+$\frac{1}{4}π•{2}^{2}$=12+π,
底面周長為:4+4+2+2+$\frac{1}{4}•2•π•{2}^{\;}$=12+π,
柱體的高為4,
故柱體的表面積S=(12+π)×2+(12+π)×4=72+6π,
故選:A

點(diǎn)評 本題考查的知識(shí)點(diǎn)是棱柱的體積和表面積,圓柱的體積和表面積,簡單幾何體的三視圖,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在平行四邊形ABCD中,$\overrightarrow{AB}+\overrightarrow{AD}$=( 。
A.$\overrightarrow{AC}$B.$\overrightarrow{BD}$C.$\overrightarrow{CA}$D.$\overrightarrow{DB}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若滿足x,y約束條件$\left\{\begin{array}{l}{x-y+1≤0}\\{x-2y≤0}\\{x+2y-2≤0}\end{array}\right.$,則z=x+y的最大值為(  )
A.$\frac{3}{2}$B.1C.-1D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.從裝有紅球、白球和黑球各2個(gè)的口袋內(nèi)一次取出2個(gè)球,則與事件“兩球都為白球”互斥而非對立的事件是以下事件“①兩球都不是白球;②兩球恰有一白球;③兩球至少有一個(gè)白球;④兩球至多有一個(gè)白球”中的哪幾個(gè)?( 。
A.①②④B.①②③C.①③D.①②

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若集合M={x|log2x<1},集合N={x|x2-1≤0},則M∩N=(  )
A.{x|1≤x<2}B.{x|-1≤x<2}C.{x|-1<x≤1}D.{x|0<x≤1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知sin2α-2=2cos2α,則sin2α+sin2α=1或$\frac{8}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=|x-m|-|x+3m|(m>0).
(Ⅰ)當(dāng)m=1時(shí),求不等式f(x)≥1的解集;
(Ⅱ)對于任意實(shí)數(shù)x,t,不等式f(x)<|2+t|+|t-1|恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖1,在直角梯形ABCD中,AB⊥BC,BC∥AD,AD=2AB=4,BC=3,E為AD中點(diǎn),EF⊥BC,垂足為F.沿EF將四邊形ABFE折起,連接AD,AC,BC,得到如圖2所示的六面體ABCDEF.若折起后AB的中點(diǎn)M到點(diǎn)D的距離為3.

(Ⅰ)求證:平面ABFE⊥平面CDEF;
(Ⅱ)求六面體ABCDEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.定義:如果函數(shù)f(x)在[a,b]上存在x1,x2(a<x1<x2<b)滿足$f'({x_1})=\frac{f(b)-f(a)}{b-a}$,$f'({x_2})=\frac{f(b)-f(a)}{b-a}$則稱函數(shù)f(x)是[a,b]上的“中值函數(shù)”.已知函數(shù)$f(x)=\frac{1}{3}{x^3}-\frac{1}{2}{x^2}+m$是[0,m]上的“中值函數(shù)”,則實(shí)數(shù)m的取值范圍是( 。
A.$({\frac{3}{4},1})$B.$({\frac{3}{4},\frac{3}{2}})$C.$({1,\frac{3}{2}})$D.$({\frac{3}{2},+∞})$

查看答案和解析>>

同步練習(xí)冊答案