在數(shù)列{an}中,an=n3-λn,若數(shù)列{an}為遞增數(shù)列,求實數(shù)λ的取值范圍.
考點:數(shù)列的函數(shù)特性
專題:點列、遞歸數(shù)列與數(shù)學(xué)歸納法
分析:由于數(shù)列{an}為遞增數(shù)列,可得對于?n∈N*,an+1>an都成立.解出即可.
解答: 解:∵數(shù)列{an}為遞增數(shù)列,
∴對于?n∈N*,an+1>an都成立.
∴(n+1)3-λ(n+1)>n3-λn.
化為λ<3n2+3n+1,
3n2+3n+1=3(n+
1
2
)2-
3
4
+1≥7,
∴λ<7.
∴實數(shù)λ的取值范圍是(-∞,7).
點評:本題考查了單調(diào)遞增數(shù)列,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知角α頂點在原點,始邊在x軸的正半軸上,終邊在直線l:2x-y=0上,且cosα<0,點P(a,b)是α終點邊上的一點,且|OP|=
5
,求a+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinα=
5
13
,且α∈(
π
2
,π),求cos2α及sin
α
2
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,cos2
A
2
=
b+c
2c
=
9
10
,c=5,求△ABC的外接圓半徑的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求使函數(shù)y=3sin(2x+
π
4
)(x∈R)取得最大值、最小值時的x的值的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=ex+x-a(a∈R,e為自然對數(shù)的底數(shù)).
(Ⅰ)當(dāng)x∈[0,1]時,f(x)≥0恒成立,求a的取值范圍;
(Ⅱ)函數(shù)g(x)=
f(x)
,若曲線y=cos2x上 存在點(x0,y0),使得g(g(y0))=y0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知焦點為F,準(zhǔn)線為l的拋物線Γ:x2=2py(p>0)經(jīng)過點(-2
3
,3),其中A,B是拋物線上兩個動點,O為坐標(biāo)原點.
(1)求拋物線Γ的方程.
(2)若OA⊥OB,求線段AB的中點P的軌跡方程.
(3)若∠AFB=90°,線段AB的中點M,點M在直線l上的投影為N,求
|MN|
|AB|
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點P(a+1,b+1),Q(1,0),線段PQ與直線2x-3y+1=0有交點,若存在M∈R+,使得-b-a2≤M恒成立,則M的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)n很大時,函數(shù)f(x)在區(qū)間[
i-1
n
i
n
]上的值可以用
 
以直代曲.

查看答案和解析>>

同步練習(xí)冊答案