設(shè)i是虛數(shù)單位,則復(fù)數(shù)z=(
1+i
1-i
)2014
=(  )
A、-1B、1C、-iD、i
考點(diǎn):復(fù)數(shù)代數(shù)形式的混合運(yùn)算
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:利用復(fù)數(shù)的運(yùn)算法則和周期性即可得出.
解答: 解:∵
1+i
1-i
=
(1+i)2
(1-i)(1+i)
=
2i
2
=i,i4=1.
∴復(fù)數(shù)z=(
1+i
1-i
)2014
=(i4503•i2=-1.
故選:A.
點(diǎn)評(píng):本題考查復(fù)數(shù)的運(yùn)算法則和周期性,屬于簡(jiǎn)單題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

有以下四個(gè)命題:
①函數(shù)f(x)=sin(
π
3
-2x)的一個(gè)增區(qū)間是[
12
11π
12
];
②函數(shù)f(x)=sin(ωx+φ)為奇函數(shù),則φ為π的整數(shù)倍;
③對(duì)于函數(shù)f(x)=tan(2x+
π
3
),若f(x1)=f(x2),則x1-x2必是π的整數(shù)倍;
④y=|sinx|最小正周期為π;
其中正確的命題是
 
.(填上正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知變量x,y滿足約束條件
y-1≤0
x+y≥0
x-y-2≤0
,則z=x+2y的最大值為( 。
A、6B、5C、4D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓C:x2+y2-2x=0的圓心到雙曲線x2-
y
3
2
=1的漸近線的距離是( 。
A、
3
2
B、
1
2
C、1
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,內(nèi)外兩個(gè)橢圓的離心率相同,從外層橢圓頂點(diǎn)向內(nèi)層橢圓引切線AC,BD,設(shè)內(nèi)層橢圓方程為
x2
a2
+
y2
b2
=1(a>b>0),若直線AC與BD的斜率之積為-
1
4
,則橢圓的離心率為( 。
A、
1
2
B、
2
2
C、
3
2
D、
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=aex(x+1)(其中e=2.71828…),g(x)=x2+bx+2,已知它們?cè)趚=0處有相同的切線.
(Ⅰ)求函數(shù)f(x),g(x)的解析式;
(Ⅱ)求函數(shù)f(x)在[t,t+1](t>-3)上的最小值;
(Ⅲ)若對(duì)?x≥-2,kf(x)≥g(x)恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}前n項(xiàng)和為Sn,且滿足S3=
7
2
,S6=
63
2

(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求log2a1+log2a2+log2a3+…+log2a25的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某高校在招收體育特長(zhǎng)生時(shí),須對(duì)報(bào)名學(xué)生進(jìn)行三個(gè)項(xiàng)目的測(cè)試,規(guī)定三項(xiàng)都合格者才能錄。僭O(shè)每項(xiàng)測(cè)試相互獨(dú)立,學(xué)生甲和乙三個(gè)項(xiàng)目測(cè)試合格的概率均相等•且各項(xiàng)測(cè)試合格的概率分別為
1
2
,
1
2
,
1
3

(1)求學(xué)生甲和乙至少有一人被錄取的概率;
(2)求學(xué)生甲測(cè)試合格的項(xiàng)數(shù)X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列四個(gè)判斷:
①集合{-1,0,1}的真子集有6個(gè);
②函數(shù)y=ln(x2+2x+2)的值域是[0,+∞);
③函數(shù)y=2|x|的最小值是1;
④在同一坐標(biāo)系中函數(shù)y=2x與y=2-x的圖象關(guān)于y軸對(duì)稱;
其中正確命題的序號(hào)是
 
(寫出所有正確的序號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案