【題目】如圖,在四棱錐中,四邊形為平行四邊形,為直角三角形且,是等邊三角形.
(1)求證:;
(2)若,求二面角的正弦值.
【答案】(1)見解析; (2).
【解析】
(1)取AP中點(diǎn)F,連接DM,BM,由已知可證PA⊥DM,PA⊥BM,又DM∩BM=M,可得PA⊥平面DMB,因?yàn)锽D平面DMB,可證PA⊥BD;
(2)由已知可得△DAP是等腰三角形,又△ABP是等邊三角形,可求出MD⊥MB,以MP,MB,MD所在直線分別為x,y,z軸建立空間直角坐標(biāo)系.求出平面DPC與平面PCB的一個(gè)法向量,由兩法向量所成角的余弦值得二面角D﹣PC﹣B的余弦值,進(jìn)一步求得正弦值.
(1)證明:取中點(diǎn),連,
∵,為等邊三角形,
∴,又,
∴平面,又∵平面,∴.
(2)解:∵,為中點(diǎn),結(jié)合題設(shè)條件可得,
∴,∴.
如圖,以所在直線分別為軸建立空間直角坐標(biāo)系,
則,
得,,,
設(shè)平面的一個(gè)法向量,
則即,∴.
設(shè)平面的一個(gè)法向量,
由即,∴.
∴ .
設(shè)二面角的平面角為,則由圖可知,∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校抽取了100名學(xué)生期中考試的英語(yǔ)和數(shù)學(xué)成績(jī),已知成績(jī)都不低于100分,其中英語(yǔ)成績(jī)的頻率分布直方圖如圖所示,成績(jī)分組區(qū)間是,,,,.
(1)根據(jù)頻率分布直方圖,估計(jì)這100名學(xué)生英語(yǔ)成績(jī)的平均數(shù)和中位數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表);
(2)若這100名學(xué)生數(shù)學(xué)成績(jī)分?jǐn)?shù)段的人數(shù)y的情況如下表所示:
分組區(qū)間 | |||||
y | 15 | 40 | 40 | m | n |
且區(qū)間內(nèi)英語(yǔ)人數(shù)與數(shù)學(xué)人數(shù)之比為,現(xiàn)從數(shù)學(xué)成績(jī)?cè)?/span>的學(xué)生中隨機(jī)選取2人,求選出的2人中恰好有1人數(shù)學(xué)成績(jī)?cè)?/span>的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中錯(cuò)誤的個(gè)數(shù)是( )
①?gòu)哪成鐓^(qū)65戶高收入家庭,280戶中等收入家庭,105戶低收入家庭中選出100戶調(diào)查社會(huì)購(gòu)買力的某一項(xiàng)指標(biāo),應(yīng)采用的最佳抽樣方法是分層抽樣
②線性回歸直線一定過樣本中心點(diǎn)
③對(duì)于一組數(shù)據(jù),如果將它們改變?yōu)?/span>,則平均數(shù)與方差均發(fā)生變化
④若一組數(shù)據(jù)1、、2、3的眾數(shù)是2,則這組數(shù)據(jù)的中位數(shù)是2
⑤用系統(tǒng)抽樣方法從編號(hào)為1,2,3,…,700的學(xué)生中抽樣50人,若第2段中編號(hào)為20的學(xué)生被抽中,按照等間隔抽取的方法,則第5段中被抽中的學(xué)生編號(hào)為76
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓與的中心在坐標(biāo)原點(diǎn),長(zhǎng)軸均為且在軸上,短軸長(zhǎng)分別為,,過原點(diǎn)且不與軸重合的直線與,的四個(gè)交點(diǎn)按縱坐標(biāo)從大到小依次為,記,和的面積分別為和.
(1)當(dāng)直線與軸重合時(shí),若,求的值;
(2)當(dāng)變化時(shí),是否存在與坐標(biāo)軸不重合的直線,使得?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知首項(xiàng)為的等比數(shù)列不是遞減數(shù)列,其前n項(xiàng)和為,且成等差數(shù)列。
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的最大項(xiàng)的值與最小項(xiàng)的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】絕大部分人都有患呼吸系統(tǒng)疾病的經(jīng)歷,現(xiàn)在我們調(diào)查患呼吸系統(tǒng)疾病是否和所處環(huán)境有關(guān).一共調(diào)查了人,患有呼吸系統(tǒng)疾病的人,其中人在室外工作,人在室內(nèi)工作.沒有患呼吸系統(tǒng)疾病的人,其中人在室外工作,人在室內(nèi)工作.
(1)現(xiàn)采用分層抽樣從室內(nèi)工作的居民中抽取一個(gè)容量為的樣本,將該樣本看成一個(gè)總體,從中隨機(jī)的抽取兩人,求兩人都有呼吸系統(tǒng)疾病的概率.
(2)你能否在犯錯(cuò)誤率不超過的前提下認(rèn)為感染呼吸系統(tǒng)疾病與工作場(chǎng)所有關(guān);
附表:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),直線的參數(shù)方程為(為參數(shù)).
(1)求和的直角坐標(biāo)方程;
(2)若曲線截直線所得線段的中點(diǎn)坐標(biāo)為,求的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)討論函數(shù)的單調(diào)性.
(Ⅱ)若時(shí),存在兩個(gè)正實(shí)數(shù)滿足,求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某小區(qū)隨機(jī)抽取40個(gè)家庭,收集了這40個(gè)家庭去年的月均用水量(單位:噸)的數(shù)據(jù),整理得到頻數(shù)分布表和頻率分布直方圖.
(1)求頻率分布直方圖中的值;
(2)從該小區(qū)隨機(jī)選取一個(gè)家庭,試估計(jì)這個(gè)家庭去年的月均用水量不低于6噸的概率;
(3)在這40個(gè)家庭中,用分層抽樣的方法從月均用水量不低于6噸的家庭里抽取一個(gè)容量為7的樣本,將該樣本看成一個(gè)總體,從中任意選取2個(gè)家庭,求其中恰有一個(gè)家庭的月均用水量不低于8噸的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com