7.已知集合A={0,1},B={1,2,3},則A∪B=( 。
A.{1}B.{0,2,3}C.{0,1,2,3}D.{1,2,3}

分析 由A與B,求出兩集合的并集即可.

解答 解:∵A={0,1},B={1,2,3},
∴A∪B={0,1,2,3},
故選:C.

點(diǎn)評 此題考查了并集及其運(yùn)算,熟練掌握并集的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)為定義域?yàn)镽的奇函數(shù),當(dāng)x>0時,f(x)=x+$\root{3}{x}$+1,求f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)i為虛數(shù)單位,則復(fù)數(shù)i2015的共軛復(fù)數(shù)為i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.網(wǎng)購已成為當(dāng)今消費(fèi)者喜歡的購物方式,某機(jī)構(gòu)對A、B、C、D四家同類運(yùn)動服裝網(wǎng)店的關(guān)注人數(shù)x(千人)與其商品銷售件數(shù)y(百件)進(jìn)行統(tǒng)計對比,得到表格:
 網(wǎng)店名稱 A B C D
 x 3 4 6 7
 y 11 12 2017
由散點(diǎn)圖得知,可以用回歸直線方程y=bx+a來近似刻畫它們之間的關(guān)系
(1)求y與x的回歸直線方程;
(2)在(1)的回歸模型中,請用R2說明,銷售件數(shù)的差異有多大程度是由關(guān)注人數(shù)引起的?(精確到0.01)
參考公式::$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$;$\hat a=\overline y-\hat b\overline x$;R2═1-$\frac{\sum_{i=1}^{n}({y}_{i}-\widehat{{y}_{i}})^{2}}{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$
參考數(shù)據(jù):$\sum_{i=1}^{n}$xiyi=320;$\sum_{i=1}^{n}$x2=110.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知O(0,0),A(2,-1),B(1,2).
(1)求△OAB的面積;
(2)若點(diǎn)C滿足直線BC⊥AB,且AC∥OB,求點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知具有線性相關(guān)關(guān)系的兩個變量x與y的一組對應(yīng)數(shù)據(jù)如表所示,則據(jù)此建立的回歸直線方程是( 。
x12345
y146811
A.$\widehat{y}$=2x-1B.$\widehat{y}$=2x+1C.$\widehat{y}$=2.4x-1.2D.$\widehat{y}$=2.4x-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.不等式(x-3)(x+2)<0的解集為( 。
A.(-3,2)B.(-2,3)C.[-3,2)D.(-∞,-2)∪(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若兩個圓心角相同的扇形的面積之比為1:4,則這兩個扇形的周長之比為( 。
A.1:$\sqrt{2}$B.1:2C.1:4D.1:2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)平面直角坐標(biāo)系xOy中,曲線G:y=$\frac{{x}^{2}}{2}$+$\frac{a}{2}$x-a2(x∈R),a為常數(shù).
(1)若a≠0,曲線G的圖象與兩坐標(biāo)軸有三個交點(diǎn),求經(jīng)過這三個交點(diǎn)的圓C的一般方程;
(2)在(1)的條件下,求圓心C所在曲線的軌跡方程;
(3)若a=0,已知點(diǎn)M(0,3),在y軸上存在定點(diǎn)N(異于點(diǎn)M)滿足:對于圓C上任一點(diǎn)P,都有$\frac{|PN|}{|PM|}$為一常數(shù),試求所有滿足條件的點(diǎn)N的坐標(biāo)及該常數(shù).

查看答案和解析>>

同步練習(xí)冊答案