已知,橢圓C經(jīng)過點(diǎn)A(1,),兩個(gè)焦點(diǎn)為(-1,0),(1,0).

(1)求橢圓C的方程;

(2)E,F是橢圓C上的兩個(gè)動(dòng)點(diǎn),如果直線AE的斜率與AF的斜率互為相反數(shù),證明直線EF的斜率為定值,并求出這個(gè)定值.

【答案】解:(1)由題意,c=1,可設(shè)橢圓方程為,

因?yàn)锳在橢圓上,

所以,

解得b2=3,(舍去).

所以橢圓方程為.

(2)設(shè)直線AE方程:

,代入

(3+4k2)x2+4k(3-2k)x+4()2-12=0.

設(shè)E(xE,yE),F(xF,yF),因?yàn)辄c(diǎn)A(1,)在橢圓上,

所以,.

又直線AF的斜率與AE的斜率互為相反數(shù),在上式中以-k代k,可得,

.

所以直線EF的斜率,

即直線EF的斜率為定值,其值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C經(jīng)過點(diǎn)A(1, 
3
2
)
,且經(jīng)過雙曲線y2-x2=1的頂點(diǎn).P是該橢圓上的一個(gè)動(dòng)點(diǎn),F(xiàn)1,F(xiàn)2是橢圓的左右焦點(diǎn),
(1)求橢圓C的方程;
(2)求|PF1|•|PF2|的最大值和最小值.
(3)求
PF1
PF2
的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•臨沂三模)已知橢圓C經(jīng)過點(diǎn)M(1,
32
)
,其左頂點(diǎn)為N,兩個(gè)焦點(diǎn)為(-1,0),(1,0),平行于MN的直線l交橢圓于A,B兩個(gè)不同的點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)求證:直線MA,MB與x軸始終圍成一個(gè)等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C經(jīng)過點(diǎn)M(1,
32
),兩個(gè)焦點(diǎn)是F1(-1,0)和F2(1,0)
(I)求橢圓C的方程;
(II)若A、B為橢圓C的左、右頂點(diǎn),P是橢圓C上異于A、B的動(dòng)點(diǎn),直線AP 與橢圓在點(diǎn)B處的切線交于點(diǎn)D,當(dāng)直線AP繞點(diǎn)A轉(zhuǎn)動(dòng)時(shí),求證:以BD為直徑的圓與直線的圓與直線PF2相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C經(jīng)過點(diǎn)A(1, 
3
2
)
,且經(jīng)過雙曲線y2-x2=1的頂點(diǎn).P是該橢圓上的一個(gè)動(dòng)點(diǎn),F(xiàn)1,F(xiàn)2是橢圓的左右焦點(diǎn),
(1)求橢圓C的方程;
(2)求|PF1|•|PF2|的最大值和最小值.
(3)求
PF1
PF2
的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案