已知函數(shù)
(1)若函數(shù)的圖象切x軸于點(2,0),求a、b的值;
(2)設(shè)函數(shù)的圖象上任意一點的切線斜率為k,試求的充要條件;
(3)若函數(shù)的圖象上任意不同的兩點的連線的斜率小于l,求證.
(1),;(2);(3)
解析試題分析:(1)由函數(shù)的圖象切x軸于點(2,0),得且,解方程組可得的值.
(2)由于,根據(jù)導(dǎo)數(shù)的幾何意義,任意不同的兩點的連線的斜率小于l,對任意的恒成立,利用分離變量法,轉(zhuǎn)化為對任意的恒成立,進(jìn)一步轉(zhuǎn)化為函數(shù)的最值問題;
(3)設(shè),則
對恒成立
將上不等式看成是關(guān)于的一元二次不等式即可.
解:(1)
由,得,
又,得
(2)
對任意的,即對任意的恒成立
等價于對任意的恒成立
令
則
,當(dāng)且僅當(dāng)時“=”成立,
在上為增函數(shù),
(3)設(shè),則
即,對恒成立
,對恒成立
即,對恒成立
解得
考點:1、導(dǎo)數(shù)的幾何意義;2、等價轉(zhuǎn)化的思想;3、二次函數(shù)與一元二次一不等式問題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù).
(1)若曲線在點處與直線相切,求a,b的值;
(2)求函數(shù)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),曲線經(jīng)過點,
且在點處的切線為.
(1)求、的值;
(2)若存在實數(shù),使得時,恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)若函數(shù)在內(nèi)單調(diào)遞增,求的取值范圍;
(2)若函數(shù)在處取得極小值,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)求函數(shù)在處的切線的斜率;
(2)求函數(shù)的最大值;
(3)設(shè),求函數(shù)在上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某風(fēng)景區(qū)在一個直徑AB為100米的半圓形花園中設(shè)計一條觀光線路(如圖所示).在點A與圓
弧上的一點C之間設(shè)計為直線段小路,在路的兩側(cè)邊緣種植綠化帶;從點C到點B設(shè)計為沿弧的弧形小路,在路的一側(cè)邊緣種植綠化帶.(注:小路及綠化帶的寬度忽略不計)
(1)設(shè)(弧度),將綠化帶總長度表示為的函數(shù);
(2)試確定的值,使得綠化帶總長度最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè),其中a∈R,曲線y=f(x)在點(1,f(1))處的切線與y軸相交于點(0,6).
(1)確定a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間與極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)若,求曲線在處的切線方程;
(2)求的單調(diào)區(qū)間;
(3)設(shè),若對任意,均存在,使得,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com